Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 33(6): 2612-2625, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35797708

RESUMEN

Growth hormone secretagogue receptor 1a (GHSR1a)-the receptor for orexigenic hormone ghrelin-is a G protein-coupled receptor that is widely distributed in the brain, including the hippocampus. Studies have demonstrated that genetic deletion of GHSR1a affects memory, suggesting the importance of ghrelin/GHSR1a signaling in cognitive control. However, current reports are controversial, and the mechanism underlying GHSR1a modulation of memory is uncertain. Here, we first report that global GHSR1a knockout enhances hippocampus-dependent memory, facilitates initial LTP in dorsal hippocampal Schaffer Collateral-CA1 synapses, and downregulates Akt activity in the hippocampus. Moreover, we show that the intrinsic excitability of GAD67+ interneurons-rather than neighboring pyramidal neurons in the dCA1-is suppressed by GHSR1a deletion, an effect that is antagonized by acute application of the Akt activator SC79. In addition, the inhibitory postsynaptic currents (IPSCs) on dCA1 pyramidal neurons are selectively reduced in mice with a GHSR1a deficiency. Finally, we demonstrate that selectively increasing the excitability of parvalbumin-expressing interneurons by hM3Dq-DREADDs increases IPSCs on dCA1 pyramidal neurons and normalizes memory in Ghsr1a KO mice. Our findings thus reveal a novel mechanism underlying memory enhancement of GHSR1a deficiency and herein support an adverse effect of GHSR1a signaling in hippocampus-dependent memory processes.


Asunto(s)
Región CA1 Hipocampal , Ghrelina , Memoria , Células Piramidales , Receptores de Ghrelina , Colateral de Schaffer , Animales , Ratones , Ghrelina/genética , Ghrelina/metabolismo , Hipocampo/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Memoria/fisiología , Región CA1 Hipocampal/metabolismo , Colateral de Schaffer/metabolismo
2.
Biochem Biophys Res Commun ; 589: 260-266, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34929449

RESUMEN

Acute respiratory distress syndrome (ARDS) is a critical illness syndrome characterized by dysregulated pulmonary inflammation. Currently, effective pharmacological treatments for ARDS are unavailable. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHS-R1a), has a pivotal role in regulating energy metabolism and immunomodulation. The role of endogenous ghrelin in ARDS remains unresolved. Herein, we investigated the role of endogenous ghrelin signaling by using GHS-R1a-null (ghsr-/-) mice and lipopolysaccharide (LPS)-induced ARDS model. Ghsr-/- mice survived longer than controls after LPS-induced lung injury. Ghsr-/- mice showed lower levels of pro-inflammatory cytokines and higher oxygenation levels after lung injury. The peritoneal macrophages isolated from ghsr-/- mice exhibited lower levels of cytokines production and oxygen consumption rate after LPS stimulation. Our results indicated that endogenous ghrelin plays a pivotal role in initiation and continuation in acute inflammatory response in LPS-induced ARDS model by modulating macrophage activity, and highlighted endogenous GHS-R1a signaling in macrophage as a potential therapeutic target in this relentless disease.


Asunto(s)
Regulación hacia Abajo , Lesión Pulmonar/patología , Macrófagos Peritoneales/patología , Receptores de Ghrelina/deficiencia , Animales , Respiración de la Célula , Citocinas/genética , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Lesión Pulmonar/complicaciones , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Neumonía/complicaciones , Neumonía/patología , Alveolos Pulmonares/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Ghrelina/metabolismo
3.
Biochem Biophys Res Commun ; 529(4): 1131-1136, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819576

RESUMEN

The brain-gut hormone ghrelin and its receptor GHS-R1a, the growth hormone secretagogue receptor 1a, regulates diverse functions of central nervous system including stress response and mood. Both acute and chronic caloric restrictions (CR) were reported to increase endogenous ghrelin level meanwhile regulate anxiety-related behaviors; however, the causal relationship between CR-induced ghrelin elevation and anxiety are not fully established. Here, we introduced an acute (24 h) and a chronic (10wks) CR procedure to both GHS-R1a KO (Ghsr-/-) mice and WT (Ghsr+/+) littermates, and compared their anxiety-related behaviors. We found that acute CR induced anxiolytic and anti-despairing behaviors in Ghsr+/+ mice but not in Ghsr-/- mice. Ad-libitum refeeding abolished the effect of acute CR on anxiety-related behaviors. In contrast, chronic CR for 10wks facilitated despair-like behavior meanwhile inhibited anxiety-like behavior in Ghsr+/+ mice. GHS-R1a deficiency rescued despair-like behavior while did not affect anxiolytic response induced by chronic CR. In addition, we found elevated interleukin-6 (IL-6) in serum of Ghsr+/+ mice after chronic CR, but not in Ghsr-/- mice. Altogether, our findings indicated that acute CR and chronic CR have different impacts on anxiety-related behaviors, and the former is dependent on ghrelin/GHS-R1a signaling while the latter may not always be. In addition, our findings suggested that GHS-R1a-dependent elevation in serum IL-6 might contribute to increased despair-like behavior in chronic CR state.


Asunto(s)
Ansiedad/metabolismo , Conducta Animal , Restricción Calórica , Ghrelina/metabolismo , Receptores de Ghrelina/metabolismo , Transducción de Señal , Animales , Ansiolíticos/metabolismo , Ansiedad/sangre , Ghrelina/deficiencia , Interleucina-6/sangre , Masculino , Ratones Endogámicos C57BL , Receptores de Ghrelina/deficiencia
4.
J Neurochem ; 144(1): 58-67, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29063591

RESUMEN

Ghrelin is an appetite-stimulating peptide. Serine 3 on ghrelin must be acylated by octanoate via the enzyme ghrelin-O-acyltransferase (GOAT) for the peptide to bind and activate the cognate receptor, growth hormone secretagogue receptor type 1a (GHSR1a). Interest in GHSR1a increased dramatically when GHSR1a mRNA was demonstrated to be widespread in the brain, including the cortex and hippocampus, indicating that it has multifaceted functions beyond the regulation of metabolism. However, the source of octanoylated ghrelin for GHSR1a in the brain, outside of the hypothalamus, is not well understood. Here, we report the presence of GOAT and its ability to acylate non-octanoylated ghrelin in the hippocampus. GOAT immunoreactivity is aggregated at the base of the dentate granule cell layer in the rat and wild-type mouse. This immunoreactivity was not affected by the pharmacological inhibition of GHSR1a or the metabolic state-dependent fluctuation of systemic ghrelin levels. However, it was absent in the GHSR1a knockout mouse hippocampus, pointing the possibility that the expression of GHSR1a may be a prerequisite for the production of GOAT. Application of fluorescein isothiocyanate (FITC)-conjugated non-octanoylated ghrelin in live hippocampal slice culture (but not in fixed culture or in the presence of GOAT inhibitors) mimicked the binding profile of FITC-conjugated octanoylated ghrelin, suggesting that extracellularly applied non-octanoylated ghrelin was acylated by endogenous GOAT in the live hippocampus while GOAT being mobilized out of neurons. Our results will advance the understanding for the role of endogenous GOAT in the hippocampus and facilitate the search for the source of ghrelin that is intrinsic to the brain.


Asunto(s)
Aciltransferasas/metabolismo , Giro Dentado/enzimología , Ghrelina/metabolismo , Acilación , Animales , Caprilatos/metabolismo , Femenino , Fluoresceína-5-Isotiocianato , Colorantes Fluorescentes , Ghrelina/farmacología , Masculino , Proteínas de la Membrana , Ratones , Ratones Noqueados , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Procesamiento Proteico-Postraduccional , Ratas , Ratas Sprague-Dawley , Receptores de Ghrelina/antagonistas & inhibidores , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/fisiología
5.
Cell Physiol Biochem ; 50(5): 1698-1710, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30384380

RESUMEN

BACKGROUND/AIMS: Obesity is associated with a reduction in ghrelin, a 28 aa gastric hormone. Whether reduced ghrelin contributes to the impaired proliferation of hepatocytes associated with obesity-related steatosis remains largely unknown. Here we examined the effects of ghrelin on the proliferation of hepatocytes derived from lean and obese mice. METHODS: AML 12 cells or hepatocytes isolated from mice fed normal chow diet (NCD) or high fat diet (HFD) were used. Effects of ghrelin on hepatocyte proliferation were detected with CCK8 assay and EdU staining. Cell cycle was analyzed by flow cytometry. Levels of proliferation markers was examined by Western blot. RESULTS: Growth hormone secretagogue receptor 1a (GHS-R1a) mRNA and protein were present in hepatocytes. Levels of GHS-R1a were increased upon ghrelin treatment. Ghrelin significantly increased hepatocyte proliferation measured by Cell Counting Kit-8(CCK8) assay and EdU staining in a dose- and time-dependent manner. Proportion of cells in S phase was markedly increased upon treatment with ghrelin. Ghrelin significantly increased levels of proliferating cell nuclear antigen (PCNA) and cyclin D1, while reducing p27 in hepatocytes from mice fed NCD or HFD. Deletion of GHS-R1a completely abolished the effects of ghrelin in cultured hepatocytes. Ghrelin stimulated the phosphorylation of glycogen synthase kinase 3 beta (GSK3ß), leading to subsequent increase of nuclear ß-catenin in hepatocytes derived from lean and obese mice. This effect was dependent on the GHS-R1a. CONCLUSION: Ghrelin activates GHS-R1a to stimulate hepatocyte proliferation via GSK3/ß-catenin signaling pathway.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ghrelina/farmacología , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Células Cultivadas , Ciclina D1/metabolismo , Dieta Alta en Grasa , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Regulación hacia Arriba/efectos de los fármacos , beta Catenina/metabolismo
6.
Int J Mol Sci ; 18(5)2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28445429

RESUMEN

Ghrelin receptor (Ghr-R) signaling in neurons of the ventral tegmental area (VTA) can modulate dopaminergic function and the reward-related effects of both palatable foods and drugs of abuse. In this study, we re-introduced the Ghr-R in VTA neurons in Ghr-R knockout mice (Ghr-RVTA mice) to specifically study the importance of the constitutively active Ghr-R for VTA neuronal signaling. Our results showed that re-introduction of the Ghr-R in the VTA had no impact on body weight or food intake under basal conditions. However, during novel environment stress Ghr-RVTA mice showed increased food intake and energy expenditure compared to Ghr-R knockout mice, demonstrating the significance of Ghr-R signaling in the response to stress. Ghr-RVTA mice also showed increased cocaine-induced locomotor activity compared to Ghr-R knockout mice, highlighting the importance of ghrelin signaling for the reward-related effects of activation of VTA neurons. Overall, our data suggest that re-introduction of the Ghr-R in the mesolimbic reward system of Ghr-R knockout mice increases the level of activation induced by both cocaine and novelty stress.


Asunto(s)
Conducta Animal/fisiología , Receptores de Ghrelina/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Peso Corporal , Dependovirus/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Ingestión de Alimentos , Metabolismo Energético , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Consumo de Oxígeno , Receptores de Dopamina D2/metabolismo , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/genética , Tirosina 3-Monooxigenasa/metabolismo
7.
Biochem Biophys Res Commun ; 479(2): 125-131, 2016 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-27404127

RESUMEN

Growth hormone secretagogue receptor (GHSR) is involved in appetite regulation and energy homeostasis. In the present study, we examined the role of GHSR in neointimal formation following vascular injury. In the mouse model of femoral artery wire injury, we found that vessel intima-to-media ratio was significantly reduced in GHSR deficiency (GHSR-/-) mice compared with that in wild-type mice. Immunohistochemical staining showed that the smooth muscle cell (SMCs) in the neointima were significantly decreased in the injured arteries of GHSR-/- mice which was associated with decreased SMC proliferation and migration. Furthermore, immunoblotting demonstrated that, in cultured rat aortic SMCs, small interfering RNA-mediated GHSR knockdown suppressed the activation of Akt and ERK1/2 signaling pathway. These findings suggested a novel role of GHSR in neointimal formation likely via promoting the proliferation and migration of SMCs involving Akt and ERK1/2 signaling. Therefore, GHSR may be a potential therapeutic target in restenosis and vascular remodeling.


Asunto(s)
Arteria Femoral/lesiones , Arteria Femoral/fisiopatología , Neointima/fisiopatología , Receptores de Ghrelina/deficiencia , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Arteria Femoral/metabolismo , Immunoblotting , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Neointima/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Ratas Sprague-Dawley , Receptores de Ghrelina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Mol Psychiatry ; 20(4): 500-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24751964

RESUMEN

Augmenting hippocampal neurogenesis represents a potential new strategy for treating depression. Here we test this possibility by comparing hippocampal neurogenesis in depression-prone ghrelin receptor (Ghsr)-null mice to that in wild-type littermates and by determining the antidepressant efficacy of the P7C3 class of neuroprotective compounds. Exposure of Ghsr-null mice to chronic social defeat stress (CSDS) elicits more severe depressive-like behavior than in CSDS-exposed wild-type littermates, and exposure of Ghsr-null mice to 60% caloric restriction fails to elicit antidepressant-like behavior. CSDS resulted in more severely reduced cell proliferation and survival in the ventral dentate gyrus (DG) subgranular zone of Ghsr-null mice than in that of wild-type littermates. Also, caloric restriction increased apoptosis of DG subgranular zone cells in Ghsr-null mice, although it had the opposite effect in wild-type littermates. Systemic treatment with P7C3 during CSDS increased survival of proliferating DG cells, which ultimately developed into mature (NeuN+) neurons. Notably, P7C3 exerted a potent antidepressant-like effect in Ghsr-null mice exposed to either CSDS or caloric restriction, while the more highly active analog P7C3-A20 also exerted an antidepressant-like effect in wild-type littermates. Focal ablation of hippocampal stem cells with radiation eliminated this antidepressant effect, further attributing the P7C3 class antidepressant effect to its neuroprotective properties and resultant augmentation of hippocampal neurogenesis. Finally, P7C3-A20 demonstrated greater proneurogenic efficacy than a wide spectrum of currently marketed antidepressant drugs. Taken together, our data confirm the role of aberrant hippocampal neurogenesis in the etiology of depression and suggest that the neuroprotective P7C3-compounds represent a novel strategy for treating patients with this disease.


Asunto(s)
Síntomas Conductuales/tratamiento farmacológico , Síntomas Conductuales/patología , Carbazoles/uso terapéutico , Hipocampo/patología , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Animales , Antidepresivos/uso terapéutico , Síntomas Conductuales/genética , Síntomas Conductuales/fisiopatología , Restricción Calórica , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Irradiación Craneana , Modelos Animales de Enfermedad , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética , Neurogénesis/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Fosfopiruvato Hidratasa/metabolismo , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/genética , Natación/psicología , Factores de Tiempo
9.
Epilepsia ; 57(9): e195-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27378373

RESUMEN

Ghrelin has anticonvulsant and neuroprotective effects in models of chemoconvulsant-induced seizures and status epilepticus. In this study we investigated whether deletion of the ghrelin receptor could alter the kindling process in the 6 Hz corneal kindling model and whether ghrelin receptor ligands possess anticonvulsant effects in fully kindled mice. Ghrelin receptor wild-type and knockout mice were electrically stimulated at a subconvulsive current twice daily via corneal electrodes until they reached the fully kindled state. Mice lacking the ghrelin receptor showed similar seizure severity during kindling acquisition as well as in the maintenance phase when compared to their wild-type littermates. Subsequently we proceeded by investigating possible anticonvulsant effects of the ghrelin receptor ligands in the acute 6 Hz seizure model and the fully 6 Hz kindled mice. The ghrelin receptor agonist JMV-1843 decreased the seizure severity score both in acutely 6 Hz stimulated mice and in fully kindled ghrelin receptor wild-type mice, but not in fully kindled ghrelin receptor knockout mice. No effect on seizure severity was observed following the ghrelin receptor antagonist JMV-2959 in both models. This finding indicates that JMV-1843 exerts an anticonvulsant effect in kindled mice via the ghrelin receptor.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Córnea/inervación , Excitación Neurológica/efectos de los fármacos , Receptores de Ghrelina/agonistas , Estado Epiléptico/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica/efectos adversos , Glicina/análogos & derivados , Glicina/uso terapéutico , Indoles , Excitación Neurológica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligopéptidos/uso terapéutico , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/genética , Estado Epiléptico/genética , Triazoles/uso terapéutico , Triptófano/análogos & derivados
10.
Eur J Neurosci ; 35(2): 233-43, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22211783

RESUMEN

Ghrelin receptors are expressed by key components of the arousal system. Exogenous ghrelin induces behavioral activation, promotes wakefulness and stimulates eating. We hypothesized that ghrelin-sensitive mechanisms play a role in the arousal system. To test this, we investigated the responsiveness of ghrelin receptor knockout (KO) mice to two natural wake-promoting stimuli. Additionally, we assessed the integrity of their homeostatic sleep-promoting system using sleep deprivation. There was no significant difference in the spontaneous sleep-wake activity between ghrelin receptor KO and wild-type (WT) mice. WT mice mounted robust arousal responses to a novel environment and food deprivation. Wakefulness increased for 6 h after cage change accompanied by increases in body temperature and locomotor activity. Ghrelin receptor KO mice completely lacked the wake and body temperature responses to new environment. When subjected to 48 h food deprivation, WT mice showed marked increases in their waking time during the dark periods of both days. Ghrelin receptor KO mice failed to mount an arousal response on the first night and wake increases were attenuated on the second day. The responsiveness to sleep deprivation did not differ between the two genotypes. These results indicate that the ghrelin-receptive mechanisms play an essential role in the function of the arousal system but not in homeostatic sleep-promoting mechanisms.


Asunto(s)
Homeostasis/fisiología , Receptores de Ghrelina/metabolismo , Vigilia/fisiología , Animales , Temperatura Corporal/fisiología , Electroencefalografía , Ghrelina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Receptores de Ghrelina/deficiencia , Sueño/fisiología
11.
Proc Natl Acad Sci U S A ; 106(32): 13582-7, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19633195

RESUMEN

Increases in arousal and activity in anticipation of a meal, termed "food anticipatory activity" (FAA), depend on circadian food-entrainable oscillators (FEOs), whose locations and output signals have long been sought. It is known that ghrelin is secreted in anticipation of a regularly scheduled mealtime. We show here that ghrelin administration increases locomotor activity in nondeprived animals in the absence of food. In mice lacking ghrelin receptors, FAA is significantly reduced. Impressively, the cumulative rise of activity before food presentation closely approximates a Gaussian function (r = 0.99) for both wild-type and ghrelin receptor knockout animals, with the latter having a smaller amplitude. For both groups, once an animal begins its daily anticipatory bout, it keeps running until the usual time of food availability, indicating that ghrelin affects response threshold. Oxyntic cells coexpress ghrelin and the circadian clock proteins PER1 and PER2. The expression of PER1, PER2, and ghrelin is rhythmic in light-dark cycles and in constant darkness with ad libitum food and after 48 h of food deprivation. In behaviorally arrhythmic-clock mutant mice, unlike control animals, there is no evidence of a premeal decrease in oxyntic cell ghrelin. Rhythmic ghrelin and PER expression are synchronized to prior feeding, and not to photic schedules. We conclude that oxyntic gland cells of the stomach contain FEOs, which produce a timed ghrelin output signal that acts widely at both brain and peripheral sites. It is likely that other FEOs also produce humoral signals that modulate FAA.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Alimentos , Mucosa Gástrica/metabolismo , Ghrelina/metabolismo , Estómago/citología , Animales , Relojes Biológicos/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Ritmo Circadiano/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Ghrelina/administración & dosificación , Ghrelina/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/metabolismo , Estómago/efectos de los fármacos , Factores de Tiempo , Factores de Transcripción/metabolismo
12.
Nat Neurosci ; 11(7): 752-3, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18552842

RESUMEN

We found that increasing ghrelin levels, through subcutaneous injections or calorie restriction, produced anxiolytic- and antidepressant-like responses in the elevated plus maze and forced swim test. Moreover, chronic social defeat stress, a rodent model of depression, persistently increased ghrelin levels, whereas growth hormone secretagogue receptor (Ghsr) null mice showed increased deleterious effects of chronic defeat. Together, these findings demonstrate a previously unknown function for ghrelin in defending against depressive-like symptoms of chronic stress.


Asunto(s)
Depresión/prevención & control , Ghrelina/administración & dosificación , Estrés Psicológico/complicaciones , Análisis de Varianza , Animales , Conducta Animal , Restricción Calórica/métodos , Depresión/etiología , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Ensayo de Inmunoadsorción Enzimática , Reacción Cataléptica de Congelación/efectos de los fármacos , Reacción Cataléptica de Congelación/fisiología , Ghrelina/metabolismo , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Receptores de Orexina , Tiempo de Reacción/fisiología , Receptores Acoplados a Proteínas G/deficiencia , Receptores de Ghrelina/deficiencia , Receptores de Neuropéptido/deficiencia , Estrés Psicológico/genética , Natación , Factores de Tiempo
13.
BMC Physiol ; 11: 1, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21211044

RESUMEN

BACKGROUND: We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. RESULTS: Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy ß-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. CONCLUSIONS: These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge.


Asunto(s)
Técnica de Clampeo de la Glucosa/métodos , Resistencia a la Insulina/genética , Insulina/sangre , Receptores de Ghrelina/deficiencia , Animales , Grasas de la Dieta/administración & dosificación , Prueba de Tolerancia a la Glucosa/métodos , Índice Glucémico/genética , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Mol Metab ; 51: 101223, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33798772

RESUMEN

OBJECTIVE: The orexigenic hormone ghrelin exerts its physiological effects by binding to and activating the growth hormone secretagogue receptor (GHSR). The recent development of a Ghsr-IRES-Cre knock-in mouse line has enabled to genetically access GHSR-expressing neurons. Inserting a Cre construct using a knock-in strategy, even when following an upstream internal ribosome entry site (IRES) can, however, interfere with expression of a targeted gene, with consequences for the phenotype emerging. This study aimed to phenotype, both physically and metabolically, heterozygous and homozygous Ghsr-IRES-Cre mice, with a view to discovering the extent to which the ghrelin signalling system remains functional in these mice. METHODS: We assessed feeding and arcuate nucleus (Arc) Fos activation in wild-type, heterozygous and homozygous Ghsr-IRES-Cre mice in response to peripherally-administered ghrelin. We also characterised their developmental and growth phenotypes, as well as their metabolic responses upon an overnight fast. RESULTS: Insertion of the IRES-Cre cassette into the 3'-untranslated region of the Ghsr gene led to a gene-dosage GHSR depletion in the Arc. Whereas heterozygotes remained ghrelin-responsive and more closely resembled wild-types, ghrelin had reduced orexigenic efficacy and failed to induce Arc Fos expression in homozygous littermates. Homozygotes had a lower body weight accompanied by a shorter body length, less fat tissue content, altered bone parameters, and lower insulin-like growth factor-1 levels compared to wild-type and heterozygous littermates. Moreover, both heterozygous and homozygous Ghsr-IRES-Cre mice lacked the usual fasting-induced rise in growth hormone (GH) and displayed an exaggerated drop in blood glucose and insulin compared to wild-types. Unexpectedly, fasting acyl-ghrelin levels were allele-dependently increased. CONCLUSIONS: Our data suggest that (i) heterozygous but not homozygous Ghsr-IRES-Cre mice retain the usual responsiveness to administered ghrelin, (ii) the impact of fasting on GH release and glucose homeostasis is altered even when only one copy of the Ghsr gene is non-functional (as in heterozygous Ghsr-IRES-Cre mice) and (iii) homozygous Ghsr-IRES-Cre mice exhibit growth retardation. Of the many transgenic models of suppressed ghrelin signalling, Ghsr-IRES-Cre mice emerge as best representing the full breadth of the expected phenotype with respect to body weight, growth, and metabolic parameters.


Asunto(s)
Ayuno/metabolismo , Trastornos del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Receptores de Ghrelina/deficiencia , Animales , Modelos Animales de Enfermedad , Dosificación de Gen , Ghrelina/administración & dosificación , Trastornos del Crecimiento/metabolismo , Heterocigoto , Humanos , Sitios Internos de Entrada al Ribosoma/genética , Masculino , Ratones , Ratones Transgénicos , Mutación , Receptores de Ghrelina/genética
15.
Mol Metab ; 53: 101258, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34023483

RESUMEN

OBJECTIVE: Acyl-ghrelin regulates eating, body weight, blood glucose, and GH secretion upon binding to its receptor GHSR (growth hormone secretagogue receptor; ghrelin receptor). GHSR is distributed in several brain regions and some peripheral cell-types including pituitary somatotrophs. The objective of the current study was to determine the functional significance of acyl-ghrelin's action on GHSR-expressing somatotrophs in mediating GH secretion and several of acyl-ghrelin's metabolic actions. METHODS: GH-IRES-Cre mice and loxP-flanked (floxed) GHSR mice were newly developed and then crossed to one another to generate mice that lacked GHSR selectively from somatotrophs. Following validation of mice with somatotroph-selective GHSR deletion, metabolic responses of these mice and control littermates were assessed following both acute and chronic acyl-ghrelin administration, a 24-h fast, and a prolonged 60% chronic caloric restriction protocol modeling starvation. RESULTS: In mice with somatotroph-selective GHSR deletion, a single peripheral injection of acyl-ghrelin failed to induce GH secretion or increase food intake, unlike wild-type and other littermate control groups. However, the usual acute blood glucose increase in response to the acyl-ghrelin bolus was preserved. Similarly, chronic s.c. acyl-ghrelin administration to mice with somatotroph-selective GHSR deletion failed to increase plasma GH, food intake, or body weight. Physiologically elevating plasma acyl-ghrelin via a 24-h fast also failed to raise plasma GH and resulted in a limited hyperphagic response upon food reintroduction in mice with somatotroph-selective GHSR deletion, although those mice nonetheless did not exhibit an exaggerated reduction in blood glucose. Physiologically elevating plasma acyl-ghrelin via a 15-day caloric restriction protocol which provided only 40% of usual daily calories failed to raise plasma GH in mice with somatotroph-selective GHSR deletion, although those mice did not exhibit life-threatening hypoglycemia. CONCLUSIONS: These results reveal that direct engagement of GHSR-expressing somatotrophs is required for a peripheral ghrelin bolus to acutely stimulate GH secretion and the actions of chronic acyl-ghrelin delivery and physiological plasma acyl-ghrelin elevations to increase plasma GH. These results also suggest that actions of acyl-ghrelin to increase food intake and body weight are reliant on direct activation of GHSRs expressed on somatotrophs. Furthermore, these results suggest that the glucoregulatory actions of acyl-ghrelin - in particular, its actions to raise blood glucose when acutely administered, prevent small blood glucose drops following a 24-h fast, and avert life-threatening hypoglycemia during an acute-on-chronic caloric restriction protocol - do not depend on GHSR expression by somatotrophs.


Asunto(s)
Ghrelina/metabolismo , Hormona del Crecimiento/metabolismo , Animales , Glucemia/metabolismo , Ghrelina/análogos & derivados , Ratones , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo
16.
PLoS One ; 16(4): e0249420, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33793646

RESUMEN

In response to cold or diet, fatty acids are dissipated into heat through uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). This process is termed non-shivering thermogenesis, which is important for body temperature maintenance and contributes to obesity pathogenesis. Thermogenic enhancement has been considered a promising anti-obesity strategy. Ghrelin and its receptor Growth Hormone Secretagogue Receptor (GHS-R) have critical roles in energy intake, nutrient sensing, and lipid metabolism. We previously reported that global Ghsr-knockout mice have increased energy expenditure due to enhanced thermogenesis. To determine the site of action for GHS-R mediated thermogenesis, we generated brown adipocyte-specific Ghsr knockout mice (UCP1-CreER/Ghsrf/f) and assessed thermogenic responses under regular diet (RD) fed homeostatic metabolic state or high-fat diet (HFD) fed metabolically-impaired obese state, under normal or cold housing environment. Under a RD-feeding, UCP1-CreER/Ghsrf/f mice showed increased body fat and a slightly elevated core body temperature under cold but not under normal temperature. Consistently, the expression of thermogenic genes in BAT of RD-fed UCP1-CreER/Ghsrf/f mice was increased in reposes to cold. Under HFD feeding, HFD-fed UCP1-CreER/Ghsrf/f mice showed no difference in body fat or body temperature under either normal or cold exposure. Interestingly, the expression of thermogenic genes in BAT of HFD-fed UCP1-CreER/Ghsrf/f mice was upregulated under normal temperature but downregulated under cold exposure. Overall, our data show that GHS-R has cell-autonomous effect in brown adipocytes, and GHS-R regulates BAT thermogenic activity in a temperature- and metabolic state-dependent manner. The thermogenic effect of GHS-R in BAT is more pronounced in cold environment and differentially variable based on metabolic state; under cold exposure, GHS-R inhibition in BAT activates thermogenesis under homeostatic state but suppresses thermogenesis under obese state. Our finding collectively suggests that GHS-R in BAT, acting as a "metabolic thermostat", differentially regulates thermogenesis in response to different metabolic and thermal stimuli.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Receptores de Ghrelina/genética , Termogénesis/fisiología , Animales , Peso Corporal , Frío , Dieta Alta en Grasa , Ratones , Ratones Noqueados , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Ghrelina/deficiencia , Transcriptoma
17.
J Endocrinol ; 250(2): 37-48, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34060474

RESUMEN

Chronic exposure to high circulating glucocorticoid or ghrelin concentrations increases food intake, weight gain and adiposity, suggesting that ghrelin could contribute to the metabolic effects of chronic glucocorticoids. In male mice, however, blocking ghrelin receptor (GHSR) signaling increased the weight gain and adiposity induced by chronic corticosterone (CORT), rather than attenuating them. In the current study, we investigated the role of GHSR signaling in the metabolic effects of chronic exposure to high circulating CORT in female mice. To do this, female WT and GHSR KO mice were treated with either CORT in a 1% ethanol (EtOH) solution or 1% EtOH alone in their drinking water for 32 days (n = 5-8/group). Body weight, food, and water intake as well as vaginal cyclicity were assessed daily. As expected, CORT treatment-induced significant increases in body weight, food intake, adiposity and also impaired glucose tolerance. In contrast to results observed in male mice, WT and GHSR KO female mice did not differ on any of these parameters. Neither plasma levels of ghrelin, LEAP-2, the endogenous GHSR antagonist produced by the liver, nor their ratio were altered by chronic glucocorticoid exposure. In addition, CORT treatment disrupted vaginal cyclicity, produced a reduction in sucrose consumption and increased locomotor activity regardless of genotype. Chronic CORT also decreased exploration in WT but not GHSR KO mice. Collectively, these data suggest that most metabolic, endocrine, reproductive and behavioral effects of chronic CORT exposure are independent of GHSR signaling in female mice.


Asunto(s)
Corticosterona/administración & dosificación , Obesidad/etiología , Receptores de Ghrelina/fisiología , Transducción de Señal/fisiología , Adiposidad/efectos de los fármacos , Animales , Péptidos Catiónicos Antimicrobianos/sangre , Conducta Animal/efectos de los fármacos , Corticosterona/sangre , Ingestión de Alimentos/efectos de los fármacos , Femenino , Ghrelina/sangre , Ratones , Ratones Noqueados , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/genética , Aumento de Peso/efectos de los fármacos
18.
Mol Metab ; 32: 69-84, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029231

RESUMEN

OBJECTIVE: Arcuate nucleus (ARC) neurons producing Agouti-related peptide (AgRP) and neuropeptide Y (NPY; ARCAgRP/NPY neurons) are activated under energy-deficit states. ARCAgRP/NPY neurons innervate the hypothalamic paraventricular nucleus (PVH), and ARC→PVH projections are recognized as key regulators of food intake. Plasma ghrelin levels increase under energy-deficit states and activate ARCAgRP/NPY neurons by acting on the growth hormone secretagogue receptor (GHSR). Here, we hypothesized that activation of ARCAgRP/NPY neurons in fasted mice would promote morphological remodeling of the ARCAgRP/NPY→PVH projections in a GHSR-dependent manner. METHODS: We performed 1) fluorescent immunohistochemistry, 2) imaging of green fluorescent protein (GFP) signal in NPY-GFP mice, and 3) DiI axonal labeling in brains of ad libitum fed or fasted mice with pharmacological or genetic blockage of the GHSR signaling and then estimated the density and strength of ARCAgRP/NPY→PVH fibers by assessing the mean fluorescence intensity, the absolute area with fluorescent signal, and the intensity of the fluorescent signal in the fluorescent area of the PVH. RESULTS: We found that 1) the density and strength of ARCAgRP/NPY fibers increase in the PVH of fasted mice, 2) the morphological remodeling of the ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons, and 3) PVH neurons are not activated in ARC-ablated mice. We also found that fasting-induced remodeling of ARCAgRP/NPY→PVH fibers and PVH activation are impaired in mice with pharmacological or genetic blockage of GHSR signaling. CONCLUSION: This evidence shows that the connectivity between hypothalamic circuits controlling food intake can be remodeled in the adult brain, depending on the energy balance conditions, and that GHSR activity is a key regulator of this phenomenon.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Ayuno/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de Ghrelina/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Ghrelina/deficiencia
19.
Cardiovasc Res ; 116(13): 2091-2102, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31790138

RESUMEN

AIMS: Sustained activation of ß-adrenergic signalling induces cardiac fibrosis, which marks progression to heart failure. GHSR (growth hormone secretagogue receptor) is the receptor for ghrelin, which is an orexigenic gastric hormone with newly defined cardiovascular effects. The present study determined the effects of GHSR deficiency in a mouse model of isoproterenol (ISO)-induced cardiac fibrosis and examined the underlying mechanism. METHODS AND RESULTS: Histochemical studies showed that GHSR deficiency exacerbated cardiac fibrosis. Quantitative RT-PCR, western blotting, and immunofluorescence staining demonstrated that cardiac fibroblasts isolated from GHSR-/- mice exhibited increased expression of marker genes for myofibroblast trans-differentiation (α-SMA, SM22, and calponin) upon transforming growth factor-ß treatment compared to wild-type mice. RNA-sequencing of heart transcriptomes revealed that differentially expressed genes in GHSR-/- hearts were enriched in such biological processes as extracellular matrix organization, inflammatory response, lipid metabolism, cell cycle, migration, and adhesion. Particularly, GHSR deficiency increased Wnt/ß-catenin pathway activation in ISO-induced myocardial fibrosis. In addition, loss of GHSR in macrophages instigated inflammasome activation with increased cleavage and release of interleukin-18. CONCLUSION: These results for the first time demonstrated that GHSR deficiency aggravated ISO-induced cardiac fibrosis, suggesting that GHSR was a potential target for the intervention of cardiac fibrosis.


Asunto(s)
Cardiomiopatías/metabolismo , Transdiferenciación Celular , Inflamasomas/metabolismo , Macrófagos/metabolismo , Miocardio/metabolismo , Miofibroblastos/metabolismo , Receptores de Ghrelina/deficiencia , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/genética , Cardiomiopatías/patología , Células Cultivadas , Modelos Animales de Enfermedad , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibrosis , Interleucina-18/metabolismo , Isoproterenol , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Miofibroblastos/patología , Receptores de Ghrelina/genética , Vía de Señalización Wnt
20.
Neuropharmacology ; 155: 31-43, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31103617

RESUMEN

Ghrelin is an orexigenic hormone that also plays an important role in mood disorders. Our previous studies demonstrated that ghrelin administration could protect against depression-like behaviors of chronic unpredictable mild stress (CUMS) in rodents. However, the mechanism related to the effect of ghrelin on CUMS mice has yet to be revealed. This article shows that ghrelin (5 nmol/kg/day for 2 weeks, i.p.) decreased depression-like behaviors induced by CUMS and increased hippocampal integrity (neurogenesis and spine density) measured via Ki67, 5-bromo-2-deoxyuridine (BrdU), doublecortin (DCX) labeling and Golgi-cox staining, which were decreased under CUMS. The behavioral phenotypes of Growth hormone secretagogue receptor (Ghsr)-null and wild type (WT) mice were evaluated under no stress condition and after CUMS exposure to determine the effect of Ghsr knockout on the behavioral phenotypes and stress susceptibility of mice. Ghsr-null mice exhibited depression-like behaviors under no stress condition. CUMS induced similar depression- and anxiety-like behavioral manifestations in both Ghsr-null and WT mice. A similar pattern of behavioral changes was observed after hippocampal GHSR knockdown. Additionally, both Ghsr knockout as well as CUMS exhibited deleterious effects on neurogenesis and spine density in the dentate gyrus (DG). Besides, CCK8 assay and 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assay showed that ghrelin has a proliferative effect on primary cultured hippocampal neural stem cells (NSCs) and this proliferation was blocked by D-Lys3-GHRP-6 (DLS, the antagonist of GHSR, 100 µM) pretreatment. Ghrelin-induced proliferation is associated with the inhibition of G1 arrest, and this inhibition was blocked by LY294002 (specific inhibitor of PI3K, 20 µM). Furthermore, the in vivo data displayed that LY294002 (50 nmol, i.c.v.) can significantly block the antidepressant-like action of exogenous ghrelin treatment. All these results suggest that ghrelin/GHSR signaling maintains the integrity of hippocampus and has an inherent neuroprotective effect whether facing stress or not.


Asunto(s)
Ghrelina/deficiencia , Hipocampo/metabolismo , Neurogénesis/fisiología , Fármacos Neuroprotectores/metabolismo , Receptores de Ghrelina/deficiencia , Estrés Psicológico/metabolismo , Animales , Células Cultivadas , Cromonas/farmacología , Enfermedad Crónica , Proteína Doblecortina , Ghrelina/genética , Hipocampo/citología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Morfolinas/farmacología , Neurogénesis/efectos de los fármacos , Receptores de Ghrelina/antagonistas & inhibidores , Receptores de Ghrelina/genética , Estrés Psicológico/prevención & control , Estrés Psicológico/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA