Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.816
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 173(4): 864-878.e29, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29681454

RESUMEN

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Familia 4 del Citocromo P450/deficiencia , Familia 4 del Citocromo P450/genética , Descubrimiento de Drogas , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Glucocorticoides/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
2.
Physiol Rev ; 104(1): 473-532, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37732829

RESUMEN

The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRß). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRß has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.


Asunto(s)
Glucocorticoides , Sistema Hipotálamo-Hipofisario , Masculino , Animales , Femenino , Humanos , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Caracteres Sexuales , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Isoformas de Proteínas/metabolismo , Mamíferos/metabolismo
3.
Cell ; 166(5): 1269-1281.e19, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27565349

RESUMEN

The glucocorticoid receptor (GR) binds the human genome at >10,000 sites but only regulates the expression of hundreds of genes. To determine the functional effect of each site, we measured the glucocorticoid (GC) responsive activity of nearly all GR binding sites (GBSs) captured using chromatin immunoprecipitation (ChIP) in A549 cells. 13% of GBSs assayed had GC-induced activity. The responsive sites were defined by direct GR binding via a GC response element (GRE) and exclusively increased reporter-gene expression. Meanwhile, most GBSs lacked GC-induced reporter activity. The non-responsive sites had epigenetic features of steady-state enhancers and clustered around direct GBSs. Together, our data support a model in which clusters of GBSs observed with ChIP-seq reflect interactions between direct and tethered GBSs over tens of kilobases. We further show that those interactions can synergistically modulate the activity of direct GBSs and may therefore play a major role in driving gene activation in response to GCs.


Asunto(s)
Genoma Humano , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Células A549 , Sitios de Unión/efectos de los fármacos , Inmunoprecipitación de Cromatina , Dexametasona/metabolismo , Dexametasona/farmacología , Genes Reporteros , Glucocorticoides/farmacología , Humanos , Unión Proteica/efectos de los fármacos , Elementos de Respuesta
4.
Nat Immunol ; 19(9): 954-962, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127438

RESUMEN

Controlling the balance between immunity and immunopathology is crucial for host resistance to pathogens. After infection, activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to the production of glucocorticoids. However, the pleiotropic effects of these steroid hormones make it difficult to delineate their precise role(s) in vivo. Here we found that the regulation of natural killer (NK) cell function by the glucocorticoid receptor (GR) was required for host survival after infection with mouse cytomegalovirus (MCMV). Mechanistically, endogenous glucocorticoids produced shortly after infection induced selective and tissue-specific expression of the checkpoint receptor PD-1 on NK cells. This glucocorticoid-PD-1 pathway limited production of the cytokine IFN-γ by spleen NK cells, which prevented immunopathology. Notably, this regulation did not compromise viral clearance. Thus, the fine tuning of NK cell functions by the HPA axis preserved tissue integrity without impairing pathogen elimination, which reveals a novel aspect of neuroimmune regulation.


Asunto(s)
Glucocorticoides/metabolismo , Infecciones por Herpesviridae/inmunología , Células Asesinas Naturales/fisiología , Muromegalovirus/fisiología , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Células Cultivadas , Femenino , Sistema Hipotálamo-Hipofisario , Inmunidad Innata , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroinmunomodulación , Especificidad de Órganos , Sistema Hipófiso-Suprarrenal , Receptores de Glucocorticoides/genética , Transducción de Señal , Carga Viral
5.
Nature ; 629(8010): 184-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600378

RESUMEN

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacos
6.
Mol Cell ; 82(8): 1543-1556.e6, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35176233

RESUMEN

Folding of stringent clients requires transfer from Hsp70 to Hsp90. The co-chaperone Hop physically connects the chaperone machineries. Here, we define its role from the remodeling of Hsp70/40-client complexes to the mechanism of client transfer and the conformational switching from stalled to active client-processing states of Hsp90. We show that Hsp70 together with Hsp40 completely unfold a stringent client, the glucocorticoid receptor ligand-binding domain (GR-LBD) in large assemblies. Hop remodels these for efficient transfer onto Hsp90. As p23 enters, Hsp70 leaves the complex via switching between binding sites in Hop. Current concepts assume that to proceed to client folding, Hop dissociates and the co-chaperone p23 stabilizes the Hsp90 closed state. In contrast, we show that p23 functionally interacts with Hop, relieves the stalling Hsp90-Hop interaction, and closes Hsp90. This reaction allows folding of the client and is thus the key regulatory step for the progression of the chaperone cycle.


Asunto(s)
Pliegue de Proteína , Piridinolcarbamato , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Receptores de Glucocorticoides/metabolismo
7.
Mol Cell ; 82(3): 555-569.e7, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063133

RESUMEN

In the eukaryotic cytosol, the Hsp70 and the Hsp90 chaperone machines work in tandem with the maturation of a diverse array of client proteins. The transfer of nonnative clients between these systems is essential to the chaperoning process, but how it is regulated is still not clear. We discovered that NudC is an essential transfer factor with an unprecedented mode of action: NudC interacts with Hsp40 in Hsp40-Hsp70-client complexes and displaces Hsp70. Then, the interaction of NudC with Hsp90 allows the direct transfer of Hsp40-bound clients to Hsp90 for further processing. Consistent with this mechanism, NudC increases client activation in vitro as well as in cells and is essential for cellular viability. Together, our results show the complexity of the cooperation between the major chaperone machineries in the eukaryotic cytosol.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Nucleares/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Supervivencia Celular , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Células K562 , Cinética , Simulación del Acoplamiento Molecular , Proteínas Nucleares/genética , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Mol Cell ; 82(4): 803-815.e5, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35077705

RESUMEN

The hormone-stimulated glucocorticoid receptor (GR) modulates transcription by interacting with thousands of enhancers and GR binding sites (GBSs) throughout the genome. Here, we examined the effects of GR binding on enhancer dynamics and investigated the contributions of individual GBSs to the hormone response. Hormone treatment resulted in genome-wide reorganization of the enhancer landscape in breast cancer cells. Upstream of the DDIT4 oncogene, GR bound to four sites constituting a hormone-dependent super enhancer. Three GBSs were required as hormone-dependent enhancers that differentially promoted histone acetylation, transcription frequency, and burst size. Conversely, the fourth site suppressed transcription and hormone treatment alleviated this suppression. GR binding within the super enhancer promoted a loop-switching mechanism that allowed interaction of the DDIT4 TSS with the active GBSs. The unique functions of each GR binding site contribute to hormone-induced transcriptional heterogeneity and demonstrate the potential for targeted modulation of oncogene expression.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Dexametasona/farmacología , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptores de Glucocorticoides/agonistas , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Factores de Transcripción/genética
9.
Nat Immunol ; 18(5): 573-582, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28288100

RESUMEN

Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8+ T cell differentiation.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Epigénesis Genética , Listeriosis/inmunología , Receptores de Glucocorticoides/metabolismo , Subgrupos de Linfocitos T/fisiología , Factor de Transcripción YY1/metabolismo , Animales , Linfocitos T CD8-positivos/microbiología , Diferenciación Celular/genética , Biología Computacional , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Histonas/metabolismo , Memoria Inmunológica/genética , Ratones , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/genética , Subgrupos de Linfocitos T/microbiología , Factor de Transcripción YY1/genética
10.
Immunity ; 53(3): 658-671.e6, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937153

RESUMEN

Identifying signals in the tumor microenvironment (TME) that shape CD8+ T cell phenotype can inform novel therapeutic approaches for cancer. Here, we identified a gradient of increasing glucocorticoid receptor (GR) expression and signaling from naïve to dysfunctional CD8+ tumor-infiltrating lymphocytes (TILs). Conditional deletion of the GR in CD8+ TILs improved effector differentiation, reduced expression of the transcription factor TCF-1, and inhibited the dysfunctional phenotype, culminating in tumor growth inhibition. GR signaling transactivated the expression of multiple checkpoint receptors and promoted the induction of dysfunction-associated genes upon T cell activation. In the TME, monocyte-macrophage lineage cells produced glucocorticoids and genetic ablation of steroidogenesis in these cells as well as localized pharmacologic inhibition of glucocorticoid biosynthesis improved tumor growth control. Active glucocorticoid signaling associated with failure to respond to checkpoint blockade in both preclinical models and melanoma patients. Thus, endogenous steroid hormone signaling in CD8+ TILs promotes dysfunction, with important implications for cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Glucocorticoides/metabolismo , Macrófagos/metabolismo , Melanoma Experimental/patología , Microambiente Tumoral/inmunología , Animales , Linfocitos T CD8-positivos/citología , Línea Celular Tumoral , Hematopoyesis/inmunología , Factor Nuclear 1-alfa del Hepatocito/biosíntesis , Inhibidores de Puntos de Control Inmunológico , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/inmunología
11.
Nat Rev Mol Cell Biol ; 18(3): 159-174, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28053348

RESUMEN

The glucocorticoid receptor (GR) is a constitutively expressed transcriptional regulatory factor (TRF) that controls many distinct gene networks, each uniquely determined by particular cellular and physiological contexts. The precision of GR-mediated responses seems to depend on combinatorial, context-specific assembly of GR-nucleated transcription regulatory complexes at genomic response elements. In turn, evidence suggests that context-driven plasticity is conferred by the integration of multiple signals, each serving as an allosteric effector of GR conformation, a key determinant of regulatory complex composition and activity. This structural and mechanistic perspective on GR regulatory specificity is likely to extend to other eukaryotic TRFs.


Asunto(s)
Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Acetilación , Animales , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Regulación de la Expresión Génica , Humanos , Fosforilación , Dominios Proteicos , Receptores de Glucocorticoides/genética , Elementos de Respuesta , Sumoilación , Transcripción Genética
12.
Cell ; 157(7): 1685-97, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949977

RESUMEN

The glucocorticoid receptor (GR), like many signaling proteins, depends on the Hsp90 molecular chaperone for in vivo function. Although Hsp90 is required for ligand binding in vivo, purified apo GR is capable of binding ligand with no enhancement from Hsp90. We reveal that Hsp70, known to facilitate client delivery to Hsp90, inactivates GR through partial unfolding, whereas Hsp90 reverses this inactivation. Full recovery of ligand binding requires ATP hydrolysis on Hsp90 and the Hop and p23 cochaperones. Surprisingly, Hsp90 ATP hydrolysis appears to regulate client transfer from Hsp70, likely through a coupling of the two chaperone's ATP cycles. Such coupling is embodied in contacts between Hsp90 and Hsp70 in the GR:Hsp70:Hsp90:Hop complex imaged by cryoelectron microscopy. Whereas GR released from Hsp70 is aggregation prone, release from Hsp90 protects GR from aggregation and enhances its ligand affinity. Together, this illustrates how coordinated chaperone interactions can enhance stability, function, and regulation.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína
13.
Mol Cell ; 81(7): 1484-1498.e6, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33561389

RESUMEN

Transcription factors (TFs) regulate gene expression by binding to specific consensus motifs within the local chromatin context. The mechanisms by which TFs navigate the nuclear environment as they search for binding sites remain unclear. Here, we used single-molecule tracking and machine-learning-based classification to directly measure the nuclear mobility of the glucocorticoid receptor (GR) in live cells. We revealed two distinct and dynamic low-mobility populations. One accounts for specific binding to chromatin, while the other represents a confinement state that requires an intrinsically disordered region (IDR), implicated in liquid-liquid condensate subdomains. Further analysis showed that the dwell times of both subpopulations follow a power-law distribution, consistent with a broad distribution of affinities on the GR cistrome and interactome. Together, our data link IDRs with a confinement state that is functionally distinct from specific chromatin binding and modulates the transcriptional output by increasing the local concentration of TFs at specific sites.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Receptores de Glucocorticoides/química , Factores de Transcripción/química , Animales , Femenino , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Ratones , Ratas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Trends Biochem Sci ; 49(5): 431-444, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38429217

RESUMEN

The glucocorticoid receptor (GR) is a major nuclear receptor (NR) drug target for the treatment of inflammatory disorders and several cancers. Despite the effectiveness of GR ligands, their systemic action triggers a plethora of side effects, limiting long-term use. Here, we discuss new concepts of and insights into GR mechanisms of action to assist in the identification of routes toward enhanced therapeutic benefits. We zoom in on the communication between different GR domains and how this is influenced by different ligands. We detail findings on the interaction between GR and chromatin, and highlight how condensate formation and coregulator confinement can perturb GR transcriptional responses. Last, we discuss the potential of novel ligands and the therapeutic exploitation of crosstalk with other NRs.


Asunto(s)
Receptores de Glucocorticoides , Transducción de Señal , Receptores de Glucocorticoides/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Animales , Cromatina/metabolismo , Ligandos
15.
Cell ; 155(6): 1309-22, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24315100

RESUMEN

The treatment of advanced prostate cancer has been transformed by novel antiandrogen therapies such as enzalutamide. Here, we identify induction of glucocorticoid receptor (GR) expression as a common feature of drug-resistant tumors in a credentialed preclinical model, a finding also confirmed in patient samples. GR substituted for the androgen receptor (AR) to activate a similar but distinguishable set of target genes and was necessary for maintenance of the resistant phenotype. The GR agonist dexamethasone was sufficient to confer enzalutamide resistance, whereas a GR antagonist restored sensitivity. Acute AR inhibition resulted in GR upregulation in a subset of prostate cancer cells due to relief of AR-mediated feedback repression of GR expression. These findings establish a mechanism of escape from AR blockade through expansion of cells primed to drive AR target genes via an alternative nuclear receptor upon drug exposure.


Asunto(s)
Antagonistas de Andrógenos/uso terapéutico , Antagonistas de Receptores Androgénicos/uso terapéutico , Resistencia a Antineoplásicos , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata/tratamiento farmacológico , Receptores de Glucocorticoides/metabolismo , Animales , Benzamidas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Xenoinjertos , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Nitrilos , Feniltiohidantoína/uso terapéutico , Receptores Androgénicos/metabolismo , Transcriptoma
16.
Nature ; 601(7893): 460-464, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937942

RESUMEN

Maintaining a healthy proteome is fundamental for the survival of all organisms1. Integral to this are Hsp90 and Hsp70, molecular chaperones that together facilitate the folding, remodelling and maturation of the many 'client proteins' of Hsp902. The glucocorticoid receptor (GR) is a model client protein that is strictly dependent on Hsp90 and Hsp70 for activity3-7. Chaperoning GR involves a cycle of inactivation by Hsp70; formation of an inactive GR-Hsp90-Hsp70-Hop 'loading' complex; conversion to an active GR-Hsp90-p23 'maturation' complex; and subsequent GR release8. However, to our knowledge, a molecular understanding of this intricate chaperone cycle is lacking for any client protein. Here we report the cryo-electron microscopy structure of the GR-loading complex, in which Hsp70 loads GR onto Hsp90, uncovering the molecular basis of direct coordination by Hsp90 and Hsp70. The structure reveals two Hsp70 proteins, one of which delivers GR and the other scaffolds the Hop cochaperone. Hop interacts with all components of the complex, including GR, and poises Hsp90 for subsequent ATP hydrolysis. GR is partially unfolded and recognized through an extended binding pocket composed of Hsp90, Hsp70 and Hop, revealing the mechanism of GR loading and inactivation. Together with the GR-maturation complex structure9, we present a complete molecular mechanism of chaperone-dependent client remodelling, and establish general principles of client recognition, inhibition, transfer and activation.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Proteínas de Homeodominio , Pliegue de Proteína , Receptores de Glucocorticoides , Microscopía por Crioelectrón , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica , Receptores de Glucocorticoides/metabolismo
17.
Nature ; 607(7920): 808-815, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794478

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is the most common B cell non-Hodgkin lymphoma and remains incurable in around 40% of patients. Efforts to sequence the coding genome identified several genes and pathways that are altered in this disease, including potential therapeutic targets1-5. However, the non-coding genome of DLBCL remains largely unexplored. Here we show that active super-enhancers are highly and specifically hypermutated in 92% of samples from individuals with DLBCL, display signatures of activation-induced cytidine deaminase activity, and are linked to genes that encode B cell developmental regulators and oncogenes. As evidence of oncogenic relevance, we show that the hypermutated super-enhancers linked to the BCL6, BCL2 and CXCR4 proto-oncogenes prevent the binding and transcriptional downregulation of the corresponding target gene by transcriptional repressors, including BLIMP1 (targeting BCL6) and the steroid receptor NR3C1 (targeting BCL2 and CXCR4). Genetic correction of selected mutations restored repressor DNA binding, downregulated target gene expression and led to the counter-selection of cells containing corrected alleles, indicating an oncogenic dependency on the super-enhancer mutations. This pervasive super-enhancer mutational mechanism reveals a major set of genetic lesions deregulating gene expression, which expands the involvement of known oncogenes in DLBCL pathogenesis and identifies new deregulated gene targets of therapeutic relevance.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso , Mutación , Oncogenes , Regulación hacia Abajo , Elementos de Facilitación Genéticos/genética , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Oncogenes/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Receptores CXCR4/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Represoras/metabolismo
18.
Nature ; 601(7893): 465-469, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937936

RESUMEN

Hsp90 is a conserved and essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins1-3. The glucocorticoid receptor (GR) is a model client that constantly depends on Hsp90 for activity4-9. GR ligand binding was previously shown to nr inhibited by Hsp70 and restored by Hsp90, aided by the co-chaperone p2310. However, a molecular understanding of the chaperone-mediated remodelling that occurs between the inactive Hsp70-Hsp90 'client-loading complex' and an activated Hsp90-p23 'client-maturation complex' is lacking for any client, including GR. Here we present a cryo-electron microscopy (cryo-EM) structure of the human GR-maturation complex (GR-Hsp90-p23), revealing that the GR ligand-binding domain is restored to a folded, ligand-bound conformation, while being simultaneously threaded through the Hsp90 lumen. In addition, p23 directly stabilizes native GR using a C-terminal helix, resulting in enhanced ligand binding. This structure of a client bound to Hsp90 in a native conformation contrasts sharply with the unfolded kinase-Hsp90 structure11. Thus, aided by direct co-chaperone-client interactions, Hsp90 can directly dictate client-specific folding outcomes. Together with the GR-loading complex structure12, we present the molecular mechanism of chaperone-mediated GR remodelling, establishing the first, to our knowledge, complete chaperone cycle for any Hsp90 client.


Asunto(s)
Microscopía por Crioelectrón , Proteínas HSP90 de Choque Térmico , Prostaglandina-E Sintasas , Receptores de Glucocorticoides , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/ultraestructura , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/ultraestructura , Humanos , Ligandos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestructura , Prostaglandina-E Sintasas/química , Prostaglandina-E Sintasas/metabolismo , Prostaglandina-E Sintasas/ultraestructura , Unión Proteica , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/ultraestructura
19.
Mol Cell ; 80(2): 279-295.e8, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33065020

RESUMEN

The PTEN tumor suppressor controls cell death and survival by regulating functions of various molecular targets. While the role of PTEN lipid-phosphatase activity on PtdIns(3,4,5)P3 and inhibition of PI3K pathway is well characterized, the biological relevance of PTEN protein-phosphatase activity remains undefined. Here, using knockin (KI) mice harboring cancer-associated and functionally relevant missense mutations, we show that although loss of PTEN lipid-phosphatase function cooperates with oncogenic PI3K to promote rapid mammary tumorigenesis, the additional loss of PTEN protein-phosphatase activity triggered an extensive cell death response evident in early and advanced mammary tumors. Omics and drug-targeting studies revealed that PI3Ks act to reduce glucocorticoid receptor (GR) levels, which are rescued by loss of PTEN protein-phosphatase activity to restrain cell survival. Thus, we find that the dual regulation of GR by PI3K and PTEN functions as a rheostat that can be exploited for the treatment of PTEN loss-driven cancers.


Asunto(s)
Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Fosfohidrolasa PTEN/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Carcinogénesis , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Dexametasona/farmacología , Femenino , Humanos , Isoenzimas/metabolismo , Ratones , Modelos Biológicos , Mutación/genética , Organoides/patología , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Estabilidad Proteica , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
Nature ; 595(7867): 409-414, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34194038

RESUMEN

Social interactions among animals mediate essential behaviours, including mating, nurturing, and defence1,2. The gut microbiota contribute to social activity in mice3,4, but the gut-brain connections that regulate this complex behaviour and its underlying neural basis are unclear5,6. Here we show that the microbiome modulates neuronal activity in specific brain regions of male mice to regulate canonical stress responses and social behaviours. Social deviation in germ-free and antibiotic-treated mice is associated with elevated levels of the stress hormone corticosterone, which is primarily produced by activation of the hypothalamus-pituitary-adrenal (HPA) axis. Adrenalectomy, antagonism of glucocorticoid receptors, or pharmacological inhibition of corticosterone synthesis effectively corrects social deficits following microbiome depletion. Genetic ablation of glucocorticoid receptors in specific brain regions or chemogenetic inactivation of neurons in the paraventricular nucleus of the hypothalamus that produce corticotrophin-releasing hormone (CRH) reverse social impairments in antibiotic-treated mice. Conversely, specific activation of CRH-expressing neurons in the paraventricular nucleus induces social deficits in mice with a normal microbiome. Via microbiome profiling and in vivo selection, we identify a bacterial species, Enterococcus faecalis, that promotes social activity and reduces corticosterone levels in mice following social stress. These studies suggest that specific gut bacteria can restrain the activation of the HPA axis, and show that the microbiome can affect social behaviours through discrete neuronal circuits that mediate stress responses in the brain.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Microbioma Gastrointestinal/fisiología , Neuronas/metabolismo , Conducta Social , Estrés Psicológico , Animales , Corticosterona/sangre , Hormona Liberadora de Corticotropina/metabolismo , Enterococcus faecalis/metabolismo , Vida Libre de Gérmenes , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA