Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 76(1): 44-56.e3, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31444105

RESUMEN

Endonuclease V (EndoV) cleaves the second phosphodiester bond 3' to a deaminated adenosine (inosine). Although highly conserved, EndoV homologs change substrate preference from DNA in bacteria to RNA in eukaryotes. We have characterized EndoV from six different species and determined crystal structures of human EndoV and three EndoV homologs from bacteria to mouse in complex with inosine-containing DNA/RNA hybrid or double-stranded RNA (dsRNA). Inosine recognition is conserved, but changes in several connecting loops in eukaryotic EndoV confer recognition of 3 ribonucleotides upstream and 7 or 8 bp of dsRNA downstream of the cleavage site, and bacterial EndoV binds only 2 or 3 nt flanking the scissile phosphate. In addition to the two canonical metal ions in the active site, a third Mn2+ that coordinates the nucleophilic water appears necessary for product formation. Comparison of EndoV with its homologs RNase H1 and Argonaute reveals the principles by which these enzymes recognize RNA versus DNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Reparación del ADN , ADN Bacteriano/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Evolución Molecular , Inosina/metabolismo , ARN/metabolismo , Ribonucleasa H/metabolismo , Animales , Proteínas Argonautas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , ADN Bacteriano/química , ADN Bacteriano/genética , Desoxirribonucleasa (Dímero de Pirimidina)/química , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Humanos , Magnesio/metabolismo , Manganeso/metabolismo , Ratones , Conformación de Ácido Nucleico , Conformación Proteica , ARN/química , ARN/genética , Ribonucleasa H/química , Ribonucleasa H/genética , Relación Estructura-Actividad , Especificidad por Sustrato
2.
Mol Cell ; 68(4): 745-757.e5, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29104020

RESUMEN

R-loop, a three-stranded RNA/DNA structure, has been linked to induced genome instability and regulated gene expression. To enable precision analysis of R-loops in vivo, we develop an RNase-H-based approach; this reveals predominant R-loop formation near gene promoters with strong G/C skew and propensity to form G-quadruplex in non-template DNA, corroborating with all biochemically established properties of R-loops. Transcription perturbation experiments further indicate that R-loop induction correlates to transcriptional pausing. Interestingly, we note that most mapped R-loops are each linked to a nearby free RNA end; by using a ribozyme to co-transcriptionally cleave nascent RNA, we demonstrate that such a free RNA end coupled with a G/C-skewed sequence is necessary and sufficient to induce R-loop. These findings provide a topological solution for RNA invasion into duplex DNA and suggest an order for R-loop initiation and elongation in an opposite direction to that previously proposed.


Asunto(s)
ADN/química , Ácidos Nucleicos Heterodúplex/química , Regiones Promotoras Genéticas/fisiología , ARN/química , Ribonucleasa H/química , Transcripción Genética , ADN/biosíntesis , Células HEK293 , Humanos , Células K562 , Ácidos Nucleicos Heterodúplex/metabolismo , ARN/biosíntesis
3.
Mol Cell ; 65(5): 832-847.e4, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257700

RESUMEN

R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here we show that replication protein A (RPA), an ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability.


Asunto(s)
ADN/metabolismo , Inestabilidad Genómica , ARN/metabolismo , Proteína de Replicación A/metabolismo , Ribonucleasa H/metabolismo , Transcripción Genética , Sitios de Unión , ADN/química , ADN/genética , Células HEK293 , Células HeLa , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/genética , Interferencia de ARN , Proteína de Replicación A/química , Proteína de Replicación A/genética , Ribonucleasa H/química , Ribonucleasa H/genética , Relación Estructura-Actividad , Factores de Tiempo , Transfección
4.
Nature ; 557(7703): 118-122, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695867

RESUMEN

Reverse transcription of the HIV-1 RNA genome into double-stranded DNA is a central step in viral infection 1 and a common target of antiretroviral drugs 2 . The reaction is catalysed by viral reverse transcriptase (RT)3,4 that is packaged in an infectious virion with two copies of viral genomic RNA 5 each bound to host lysine 3 transfer RNA (tRNALys3), which acts as a primer for initiation of reverse transcription6,7. Upon viral entry into cells, initiation is slow and non-processive compared to elongation8,9. Despite extensive efforts, the structural basis of RT function during initiation has remained a mystery. Here we use cryo-electron microscopy to determine a three-dimensional structure of an HIV-1 RT initiation complex. In our structure, RT is in an inactive polymerase conformation with open fingers and thumb and with the nucleic acid primer-template complex shifted away from the active site. The primer binding site (PBS) helix formed between tRNALys3 and HIV-1 RNA lies in the cleft of RT and is extended by additional pairing interactions. The 5' end of the tRNA refolds and stacks on the PBS to create a long helical structure, while the remaining viral RNA forms two helical stems positioned above the RT active site, with a linker that connects these helices to the RNase H region of the PBS. Our results illustrate how RNA structure in the initiation complex alters RT conformation to decrease activity, highlighting a potential target for drug action.


Asunto(s)
Microscopía por Crioelectrón , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/ultraestructura , VIH-1/enzimología , Secuencia de Bases , Dominio Catalítico , Transcriptasa Inversa del VIH/metabolismo , Modelos Moleculares , Conformación Molecular , ARN de Transferencia de Lisina/química , ARN de Transferencia de Lisina/metabolismo , ARN de Transferencia de Lisina/ultraestructura , Transcripción Reversa , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Ribonucleasa H/ultraestructura
5.
J Biol Chem ; 298(4): 101790, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247386

RESUMEN

The ribonucleases H (RNases H) of HIV and hepatitis B virus are type 1 RNases H that are promising drug targets because inhibiting their activity blocks viral replication. Eukaryotic ribonuclease H1 (RNase H1) is an essential protein and a probable off-target enzyme for viral RNase H inhibitors. α-hydroxytropolones (αHTs) are a class of anti-RNase H inhibitors that can inhibit the HIV, hepatitis B virus, and human RNases H1; however, it is unclear how these inhibitors could be developed to distinguish between these enzymes. To accelerate the development of selective RNase H inhibitors, we performed biochemical and kinetic studies on the human enzyme, which was recombinantly expressed in Escherichia coli. Size-exclusion chromatography showed that free RNase H1 is monomeric and forms a 2:1 complex with a substrate of 12 bp. FRET heteroduplex cleavage assays were used to test inhibition of RNase H1 in steady-state kinetics by two structurally diverse αHTs, 110 and 404. We determined that turnover rate was reduced, but inhibition was not competitive with substrate, despite inhibitor binding to the active site. Given the compounds' reversible binding to the active site, we concluded that traditional noncompetitive and mixed inhibition mechanisms are unlikely. Instead, we propose a model in which, by binding to the active site, αHTs stabilize an inactive enzyme-substrate-inhibitor complex. This new model clarifies the mechanism of action of αHTs against RNase H1 and will aid the development of RNase H inhibitors selective for the viral enzymes.


Asunto(s)
Cicloheptanos , Unión Proteica , Dominio Catalítico , Cicloheptanos/metabolismo , Cicloheptanos/farmacología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Cinética , Unión Proteica/efectos de los fármacos , Ribonucleasa H/química
6.
Nature ; 542(7641): 377-380, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28076345

RESUMEN

The spliceosome excises introns from pre-mRNAs in two sequential transesterifications-branching and exon ligation-catalysed at a single catalytic metal site in U6 small nuclear RNA (snRNA). Recently reported structures of the spliceosomal C complex with the cleaved 5' exon and lariat-3'-exon bound to the catalytic centre revealed that branching-specific factors such as Cwc25 lock the branch helix into position for nucleophilic attack of the branch adenosine at the 5' splice site. Furthermore, the ATPase Prp16 is positioned to bind and translocate the intron downstream of the branch point to destabilize branching-specific factors and release the branch helix from the active site. Here we present, at 3.8 Å resolution, the cryo-electron microscopy structure of a Saccharomyces cerevisiae spliceosome stalled after Prp16-mediated remodelling but before exon ligation. While the U6 snRNA catalytic core remains firmly held in the active site cavity of Prp8 by proteins common to both steps, the branch helix has rotated by 75° compared to the C complex and is stabilized in a new position by Prp17, Cef1 and the reoriented Prp8 RNase H-like domain. This rotation of the branch helix removes the branch adenosine from the catalytic core, creates a space for 3' exon docking, and restructures the pairing of the 5' splice site with the U6 snRNA ACAGAGA region. Slu7 and Prp18, which promote exon ligation, bind together to the Prp8 RNase H-like domain. The ATPase Prp22, bound to Prp8 in place of Prp16, could interact with the 3' exon, suggesting a possible basis for mRNA release after exon ligation. Together with the structure of the C complex, our structure of the C* complex reveals the two major conformations of the spliceosome during the catalytic stages of splicing.


Asunto(s)
Microscopía por Crioelectrón , Exones , Empalme del ARN , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Empalmosomas/ultraestructura , Adenosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Biocatálisis , Dominio Catalítico , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/ultraestructura , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Exones/genética , Unión Proteica , Dominios Proteicos , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , Sitios de Empalme de ARN/genética , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/ultraestructura , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Ribonucleasa H/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/ultraestructura , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/ultraestructura , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/química
7.
Nature ; 542(7641): 318-323, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28076346

RESUMEN

Spliceosome rearrangements facilitated by RNA helicase PRP16 before catalytic step two of splicing are poorly understood. Here we report a 3D cryo-electron microscopy structure of the human spliceosomal C complex stalled directly after PRP16 action (C*). The architecture of the catalytic U2-U6 ribonucleoprotein (RNP) core of the human C* spliceosome is very similar to that of the yeast pre-Prp16 C complex. However, in C* the branched intron region is separated from the catalytic centre by approximately 20 Å, and its position close to the U6 small nuclear RNA ACAGA box is stabilized by interactions with the PRP8 RNase H-like and PRP17 WD40 domains. RNA helicase PRP22 is located about 100 Å from the catalytic centre, suggesting that it destabilizes the spliced mRNA after step two from a distance. Comparison of the structure of the yeast C and human C* complexes reveals numerous RNP rearrangements that are likely to be facilitated by PRP16, including a large-scale movement of the U2 small nuclear RNP.


Asunto(s)
Microscopía por Crioelectrón , Empalme del ARN , Empalmosomas/metabolismo , Empalmosomas/ultraestructura , Adenosina/metabolismo , Secuencia de Bases , Biocatálisis , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/ultraestructura , Exones/genética , Humanos , Intrones/genética , Modelos Moleculares , Movimiento , Dominios Proteicos , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/ultraestructura , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Empalmosomas/química
8.
Nucleic Acids Res ; 49(5): 2721-2739, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33577678

RESUMEN

We recently found that toxic PS-ASOs can cause P54nrb and PSF nucleolar mislocalization in an RNase H1-dependent manner. To better understand the underlying mechanisms of these observations, here we utilize different biochemical approaches to demonstrate that PS-ASO binding can alter the conformations of the bound proteins, as illustrated using recombinant RNase H1, P54nrb, PSF proteins and various isolated domains. While, in general, binding of PS-ASOs or ASO/RNA duplexes stabilizes the conformations of these proteins, PS-ASO binding may also cause the unfolding of RNase H1, including both the hybrid binding domain and the catalytic domain. The extent of conformational change correlates with the binding affinity of PS-ASOs to the proteins. Consequently, PS-ASO binding to RNase H1 induces the interaction of RNase H1 with P54nrb or PSF in a 2'-modification and sequence dependent manner, and toxic PS-ASOs tend to induce more interactions than non-toxic PS-ASOs. PS-ASO binding also enhances the interaction between P54nrb and PSF. However, the interaction between RNase H1 and P32 protein can be disrupted upon binding of PS-ASOs. Together, these results suggest that stronger binding of PS-ASOs can cause greater conformational changes of the bound proteins, subsequently affecting protein-protein interactions. These observations thus provide deeper understanding of the molecular basis of PS-ASO-induced protein mislocalization or degradation observed in cells and advance our understanding of why some PS-ASOs are cytotoxic.


Asunto(s)
Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Fosforotioatos/metabolismo , Ribonucleasa H/metabolismo , Línea Celular , Quimotripsina , Humanos , Proteínas Nucleares/metabolismo , Oligonucleótidos Antisentido/química , Oligonucleótidos Fosforotioatos/química , Unión Proteica , Conformación Proteica , Señales de Clasificación de Proteína , ARN/metabolismo , Ribonucleasa H/química
9.
J Biol Chem ; 296: 100462, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639158

RESUMEN

Ribonuclease HI, an endoribonuclease, catalyzes the hydrolysis of the RNA strand of an RNA/DNA hybrid and requires divalent metal ions for its enzymatic activity. However, the mechanistic details of the activity of ribonuclease HI and its interaction with divalent metal ions remain unclear. In this study, we performed real-time monitoring of the enzyme-substrate complex in the presence of divalent metal ions (Mn2+ or Zn2+) using electrospray ionization-mass spectrometry (ESI-MS). The findings provide clear evidence that the enzymatic activity of the ternary complex requires the binding of two divalent metal ions. The Zn2+ ions bind to both the enzyme itself and the enzyme:substrate complex more strongly than Mn2+ ions, and gives, in part, the ternary complex, [RNase HI:nicked RNA/DNA hybrid:2Zn2+], suggesting that the ternary complex is retained, even after the hydrolysis of the substrate. The collective results presented herein shed new light on the essential role of divalent metal ions in the activity of ribonuclease HI and demonstrate how Zn2+ ions confer inhibitory properties on the activity of this enzyme by forming a highly stable complex with the substrate.


Asunto(s)
Ribonucleasa H/química , Ribonucleasa H/metabolismo , Sitios de Unión , Catálisis , Cationes Bivalentes/metabolismo , ADN/química , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Iones/metabolismo , Cinética , Magnesio/metabolismo , Manganeso/metabolismo , ARN/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Especificidad por Sustrato
10.
J Am Chem Soc ; 144(12): 5342-5349, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35312304

RESUMEN

Ribonuclease HI (RNHI) nonspecifically cleaves the RNA strand of RNA:DNA hybrid duplexes in a myriad of biological processes. Several RNHI homologs contain an extended domain, termed the handle region, which is critical to substrate binding. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations have suggested a kinetic model in which the handle region can exist in open (substrate-binding competent) or closed (substrate-binding incompetent) states in homologs containing arginine or lysine at position 88 (using sequence numbering of E. coli RNHI), while the handle region populates states intermediate between the open and closed conformers in homologs with asparagine at residue 88 [Stafford, K. A., et al., PLoS Comput. Biol. 2013, 9, 1-10]. NMR parameters characterizing handle region dynamics are highly correlated with enzymatic activity for RNHI homologs with two-state (open/closed) handle regions [Martin, J. A., et al., Biochemistry 2020, 59, 3201-3205]. The work presented herein shows that homologs containing asparagine 88 display distinct structural features compared with their counterparts containing arginine or lysine 88. Comparisons of RNHI homologs and site-directed mutants with asparagine 88 support a kinetic model for handle region dynamics that includes 12 unique transitions between eight conformations. Overall, these findings present an example of the structure-function relationships of enzymes and spotlight the use of NMR spectroscopy and MD simulations in uncovering fine details of conformational preferences.


Asunto(s)
Asparagina , Escherichia coli , Arginina , Escherichia coli/metabolismo , Lisina , ARN , Ribonucleasa H/química , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
11.
J Virol ; 95(18): e0084821, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34232702

RESUMEN

Reverse transcriptases (RTs) use their DNA polymerase and RNase H activities to catalyze the conversion of single-stranded RNA to double-stranded DNA (dsDNA), a crucial process for the replication of retroviruses. Foamy viruses (FVs) possess a unique RT, which is a fusion with the protease (PR) domain. The mechanism of substrate binding by this enzyme has been unknown. Here, we report a crystal structure of monomeric full-length marmoset FV (MFV) PR-RT in complex with an RNA/DNA hybrid substrate. We also describe a structure of MFV PR-RT with an RNase H deletion in complex with a dsDNA substrate in which the enzyme forms an asymmetric homodimer. Cryo-electron microscopy reconstruction of the full-length MFV PR-RT-dsDNA complex confirmed the dimeric architecture. These findings represent the first structural description of nucleic acid binding by a foamy viral RT and demonstrate its ability to change its oligomeric state depending on the type of bound nucleic acid. IMPORTANCE Reverse transcriptases (RTs) are intriguing enzymes converting single-stranded RNA to dsDNA. Their activity is essential for retroviruses, which are divided into two subfamilies differing significantly in their life cycles: Orthoretrovirinae and Spumaretrovirinae. The latter family is much more ancient and comprises five genera. A unique feature of foamy viral RTs is that they contain N-terminal protease (PR) domains, which are not present in orthoretroviral enzymes. So far, no structural information for full-length foamy viral PR-RT interacting with nucleic substrates has been reported. Here, we present crystal and cryo-electron microscopy structures of marmoset foamy virus (MFV) PR-RT. These structures revealed the mode of binding of RNA/DNA and dsDNA substrates. Moreover, unexpectedly, the structures and biochemical data showed that foamy viral PR-RT can adopt both a monomeric configuration, which is observed in our structures in the presence of an RNA/DNA hybrid, and an asymmetric dimer arrangement, which we observed in the presence of dsDNA.


Asunto(s)
ADN/metabolismo , ADN Polimerasa Dirigida por ARN/química , ARN/metabolismo , Ribonucleasa H/química , Spumavirus/enzimología , Proteasas Virales/química , Proteínas Virales/química , Microscopía por Crioelectrón , ADN/química , Conformación Proteica , ARN/química , ADN Polimerasa Dirigida por ARN/metabolismo , Ribonucleasa H/metabolismo , Proteasas Virales/metabolismo , Proteínas Virales/metabolismo
12.
Langmuir ; 38(47): 14497-14507, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36379030

RESUMEN

The molecular crowding effect on ligand-protein interactions, which plays several crucial roles in life processes, has been investigated using various models by adding crowding agents to mimic the intracellular environment. Several studies evaluating this effect have focused on the ligand-protein binding reaction of well-structured binding sites with rigid conformations. However, the crowding effect on flexible binding sites is not well-understood, especially in terms of the conformations. In this work, to elucidate the detailed molecular mechanism underlying the ligand-protein interactions with flexible binding sites on a protein surface, we studied the interaction between the basic protrusion of Escherichia coli ribonuclease HI (RNase HI) and 8-anilinonaphthalene-1-sulfonic acid (ANS). The RNase HI concentration-dependent measurement of ANS fluorescence combined with the multivariate analysis and the fluorescence vibronic structure analysis revealed an increase in the heterogeneous species with an increase in the protein concentration, which is a different behavior from that of proteins with rigid binding sites. This result indicates that ANS molecules bind to the additional binding sites because of the destabilization of the main sites by the excluded volume effect in a crowded environment. The fluorescence vibronic structure analysis yields a detailed molecular picture, indicating that the main species of ANS can have a distorted structure. On the other hand, some ANS molecules move to the minor binding sites of a different microenvironment to secure a stabilized structure. These spectroscopic analyses may show a hypothesis, suggesting that the decrease in the ΔG difference between the main and minor sites due to destabilization of the main binding site could lower the potential barrier between them, inducing the dispersion of binding pathways.


Asunto(s)
Escherichia coli , Ribonucleasa H , Escherichia coli/metabolismo , Ligandos , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Sitios de Unión , Unión Proteica
13.
Org Biomol Chem ; 20(45): 8917-8924, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36321625

RESUMEN

RNase H acts as a key effector in gene knockdown by antisense oligonucleotides (ASOs). Although various chemical modifications have been developed to regulate RNase H-mediated cleavage, precise control is yet to be achieved. In this study, we tried to address the question of whether the interaction of phosphate groups or deoxyriboses is more important in the recognition of DNA/RNA duplex by RNase H. To answer this question, we investigated the effect of methylene group insertion at the 5'-upstream or 3'-downstream phosphorothioate groups on RNase H-mediated cleavage. By inserting a methylene group at the 5'-upside or 3'-downside, the distance between phosphates or deoxyriboses could be changed in a different pattern. Maximum suppression of the cleavage reaction was observed when a methylene group was inserted at the 5'-phosphate group of the nucleoside which is known to distinguish ribose and deoxyribose via stacking of the W221 residue in RNase H. This effect was observed in a different sequence as well as mismatched duplexes, suggesting the interaction of deoxyribose rings with RNase H is more important than that of phosphate groups. Our results will contribute to the designing of further molecular modifications that improve the selectivity of RNase H-mediated cleavage reactions which allows for the development of allele-specific ASOs.


Asunto(s)
Oligonucleótidos Antisentido , Ribonucleasa H , Ribonucleasa H/química , Oligonucleótidos Antisentido/química , Desoxirribosa , Oligonucleótidos/química , Fosfatos
14.
Nucleic Acids Res ; 48(4): 1691-1700, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31980820

RESUMEN

Therapeutic oligonucleotides are often modified using the phosphorothioate (PS) backbone modification which enhances stability from nuclease mediated degradation. However, substituting oxygen in the phosphodiester backbone with sulfur introduce chirality into the backbone such that a full PS 16-mer oligonucleotide is comprised of 215 distinct stereoisomers. As a result, the role of PS chirality on the performance of antisense oligonucleotides (ASOs) has been a subject of debate for over two decades. We carried out a systematic analysis to determine if controlling PS chirality in the DNA gap region can enhance the potency and safety of gapmer ASOs modified with high-affinity constrained Ethyl (cEt) nucleotides in the flanks. As part of this effort, we examined the effect of systematically controlling PS chirality on RNase H1 cleavage patterns, protein mislocalization phenotypes, activity and toxicity in cells and in mice. We found that while controlling PS chirality can dramatically modulate interactions with RNase H1 as evidenced by changes in RNA cleavage patterns, these were insufficient to improve the overall therapeutic profile. We also found that controlling PS chirality of only two PS linkages in the DNA gap was sufficient to modulate RNase H1 cleavage patterns and combining these designs with simple modifications such as 2'-OMe to the DNA gap resulted in dramatic improvements in therapeutic index. However, we were unable to demonstrate improved potency relative to the stereorandom parent ASO or improved safety over the 2'-OMe gap-modified stereorandom parent ASO. Overall, our work shows that while controlling PS chirality can modulate RNase H1 cleavage patterns, ASO sequence and design are the primary drivers which determine the pharmacological and toxicological properties of gapmer ASOs.


Asunto(s)
ADN/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Fosforotioatos/genética , Ribonucleasa H/genética , Animales , ADN/química , Ratones , Oligonucleótidos Antisentido/química , Oligonucleótidos Fosforotioatos/química , Unión Proteica/genética , Ribonucleasa H/química
15.
Nucleic Acids Res ; 48(20): 11551-11565, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33137198

RESUMEN

Removal of ribonucleotides (rNMPs) incorporated into the genome by the ribonucleotide excision repair (RER) is essential to avoid genetic instability. In eukaryotes, the RNaseH2 is the only known enzyme able to incise 5' of the rNMP, starting the RER process, which is subsequently carried out by replicative DNA polymerases (Pols) δ or ϵ, together with Flap endonuclease 1 (Fen-1) and DNA ligase 1. Here, we show that the DEAD-box RNA helicase DDX3X has RNaseH2-like activity and can support fully reconstituted in vitro RER reactions, not only with Pol δ but also with the repair Pols ß and λ. Silencing of DDX3X causes accumulation of rNMPs in the cellular genome. These results support the existence of alternative RER pathways conferring high flexibility to human cells in responding to the threat posed by rNMPs incorporation.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Ribonucleótidos/metabolismo , Adenosina Trifosfato/metabolismo , Dominio Catalítico , Línea Celular , ARN Helicasas DEAD-box/química , ADN Polimerasa beta/metabolismo , Humanos , Dominios Proteicos , Motivos de Unión al ARN , Ribonucleasa H/química , Ribonucleasa H/metabolismo
16.
Nucleic Acids Res ; 48(10): 5235-5253, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32356888

RESUMEN

Antisense oligonucleotides (ASOs) interact with target RNAs via hybridization to modulate gene expression through different mechanisms. ASO therapeutics are chemically modified and include phosphorothioate (PS) backbone modifications and different ribose and base modifications to improve pharmacological properties. Modified PS ASOs display better binding affinity to the target RNAs and increased binding to proteins. Moreover, PS ASO protein interactions can affect many aspects of their performance, including distribution and tissue delivery, cellular uptake, intracellular trafficking, potency and toxicity. In this review, we summarize recent progress in understanding PS ASO protein interactions, highlighting the proteins with which PS ASOs interact, the influence of PS ASO protein interactions on ASO performance, and the structure activity relationships of PS ASO modification and protein interactions. A detailed understanding of these interactions can aid in the design of safer and more potent ASO drugs, as illustrated by recent findings that altering ASO chemical modifications dramatically improves therapeutic index.


Asunto(s)
Oligonucleótidos Fosforotioatos/química , Proteínas/química , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Ligandos , Oligonucleótidos Fosforotioatos/metabolismo , Oligonucleótidos Fosforotioatos/farmacología , Oligonucleótidos Fosforotioatos/toxicidad , Unión Proteica , Dominios Proteicos , Proteínas/metabolismo , Proteínas/toxicidad , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo
17.
Nucleic Acids Res ; 48(1): 63-74, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31754711

RESUMEN

The introduction of non-bridging phosphorothioate (PS) linkages in oligonucleotides has been instrumental for the development of RNA therapeutics and antisense oligonucleotides. This modification offers significantly increased metabolic stability as well as improved pharmacokinetic properties. However, due to the chiral nature of the phosphorothioate, every PS group doubles the amount of possible stereoisomers. Thus PS oligonucleotides are generally obtained as an inseparable mixture of a multitude of diastereoisomeric compounds. Herein, we describe the introduction of non-chiral 3' thiophosphate linkages into antisense oligonucleotides and report their in vitro as well as in vivo activity. The obtained results are carefully investigated for the individual parameters contributing to antisense activity of 3' and 5' thiophosphate modified oligonucleotides (target binding, RNase H recruitment, nuclease stability). We conclude that nuclease stability is the major challenge for this approach. These results highlight the importance of selecting meaningful in vitro experiments particularly when examining hitherto unexplored chemical modifications.


Asunto(s)
Apolipoproteína B-100/genética , Oligonucleótidos/genética , Fosfatos/química , Oligonucleótidos Fosforotioatos/genética , ARN Largo no Codificante/genética , Animales , Apolipoproteína B-100/antagonistas & inhibidores , Apolipoproteína B-100/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Riñón/citología , Riñón/metabolismo , Hígado/citología , Hígado/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Oligonucleótidos/síntesis química , Oligonucleótidos/metabolismo , Fosfatos/metabolismo , Oligonucleótidos Fosforotioatos/síntesis química , Oligonucleótidos Fosforotioatos/metabolismo , Estabilidad del ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Estereoisomerismo
18.
J Biol Chem ; 295(33): 11410-11417, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32527724

RESUMEN

The health of a cell depends on accurate translation and proper protein folding, whereas misfolding can lead to aggregation and disease. The first opportunity for a protein to fold occurs during translation, when the ribosome and surrounding environment can affect the nascent chain energy landscape. However, quantifying these environmental effects is challenging because ribosomal proteins and rRNA preclude most spectroscopic measurements of protein energetics. Here, we have applied two gel-based approaches, pulse proteolysis and force-profile analysis, to probe the folding and unfolding pathways of RNase H (RNH) nascent chains stalled on the prokaryotic ribosome in vitro We found that ribosome-stalled RNH has an increased unfolding rate compared with free RNH. Because protein stability is related to the ratio of the unfolding and folding rates, this increase completely accounts for the observed change in protein stability and indicates that the folding rate is unchanged. Using arrest peptide-based force-profile analysis, we assayed the force generated during the folding of RNH on the ribosome. Surprisingly, we found that population of the RNH folding intermediate is required to generate sufficient force to release a stall induced by the SecM stalling sequence and that readthrough of SecM directly correlates with the stability of the RNH folding intermediate. Together, these results imply that the folding pathway of RNH is unchanged on the ribosome. Furthermore, our findings indicate that the ribosome promotes RNH unfolding while the nascent chain is proximal to the ribosome, which may limit the deleterious effects of RNH misfolding and assist in folding fidelity.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Pliegue de Proteína , Ribonucleasa H/química , Estabilidad de Enzimas , Escherichia coli/enzimología , Desplegamiento Proteico , Proteolisis , Ribosomas/química
19.
J Am Chem Soc ; 143(48): 20296-20301, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34843256

RESUMEN

We demonstrate a strategy that allows for the spontaneous reconfiguration of self-assembled DNA polymers exploiting RNA as chemical fuel. To do this, we have rationally designed orthogonally addressable DNA building blocks that can be transiently deactivated by RNA fuels and subtracted temporarily from participation in the self-assembly process. Through a fine modulation of the rate at which the building blocks are reactivated we can carefully control the final composition of the polymer and convert a disordered polymer in a higher order polymer, which is disfavored from a thermodynamic point of view. We measure the dynamic reconfiguration via fluorescent signals and confocal microscopy, and we derive a kinetic model that captures the experimental results. Our approach suggests a novel route toward the development of biomolecular materials in which engineered chemical reactions support the autonomous spatial reorganization of multiple components.


Asunto(s)
ADN/química , Polímeros/química , ARN/química , Conformación de Ácido Nucleico , Transición de Fase , Polimerizacion , Ribonucleasa H/química
20.
Nucleic Acids Res ; 47(20): 10865-10880, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31495875

RESUMEN

The rapid RNase H1-dependent mislocalization of heterodimer proteins P54nrb and PSF to nucleoli is an early event in the pathway that explains the effects of most toxic phosphorothioate ASOs (PS-ASOs). Using a recently developed NanoLuciferace (NLuc)-based structural complementation reporter system which allows us to observe ASO/protein interactions in real time in live cells, we have determined that safe and toxic PS-ASOs associate with these proteins with kinetics and impact on subcellular localization that differ. Toxic PS-ASOs interact in a complex that includes RNase H1, P54nrb and PSF; but RNase H1/P54nrb complexes were observed in only the cells treated with toxic, but not safe PS-ASOs. In addition, experiments performed in vitro suggest that RNA is also a required component of the complex. The protein-protein interaction between P54nrb and RNase H1 requires the spacer region of RNAse H1, while the P54nrb core domains are required for association with RNase H1. In addition, we have determined that PS-ASOs bind P54nrb via RRM1 and RRM2, while they bind RNase H1 primarily via the hybrid binding domain, however catalytic domain interactions also contribute to overall affinity. These ASO-protein interactions are highly influenced by the chemistry of the PS-ASO binding environment, however little correlation between affinity for specific proteins and PS-ASO toxicity was observed.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Fosforotioatos/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa H/metabolismo , Dominio Catalítico , Nucléolo Celular/metabolismo , Supervivencia Celular , Proteínas de Unión al ADN/química , Células HEK293 , Células HeLa , Humanos , Cinética , Unión Proteica , Proteínas de Unión al ARN/química , Ribonucleasa H/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA