Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.193
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8011): 435-442, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658751

RESUMEN

WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms1-5. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214. This compound selectively engages a cysteine (C727) located in a region of the helicase domain subject to interdomain movement during DNA unwinding. VVD-133214 binds WRN protein cooperatively with nucleotide and stabilizes compact conformations lacking the dynamic flexibility necessary for proper helicase function, resulting in widespread double-stranded DNA breaks, nuclear swelling and cell death in MSI-high (MSI-H), but not in microsatellite-stable, cells. The compound was well tolerated in mice and led to robust tumour regression in multiple MSI-H colorectal cancer cell lines and patient-derived xenograft models. Our work shows an allosteric approach for inhibition of WRN function that circumvents competition from an endogenous ATP cofactor in cancer cells, and designates VVD-133214 as a promising drug candidate for patients with MSI-H cancers.


Asunto(s)
Regulación Alostérica , Descubrimiento de Drogas , Inhibidores Enzimáticos , Proteómica , Helicasa del Síndrome de Werner , Animales , Femenino , Humanos , Masculino , Ratones , Regulación Alostérica/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Cisteína/efectos de los fármacos , Cisteína/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inestabilidad de Microsatélites , Modelos Moleculares , Helicasa del Síndrome de Werner/antagonistas & inhibidores , Helicasa del Síndrome de Werner/química , Helicasa del Síndrome de Werner/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Muerte Celular/efectos de los fármacos , Adenosina Trifosfato/metabolismo
2.
Mol Cell ; 81(12): 2611-2624.e10, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33857404

RESUMEN

The Shieldin complex shields double-strand DNA breaks (DSBs) from nucleolytic resection. Curiously, the penultimate Shieldin component, SHLD1, is one of the least abundant mammalian proteins. Here, we report that the transcription factors THAP1, YY1, and HCF1 bind directly to the SHLD1 promoter, where they cooperatively maintain the low basal expression of SHLD1, thereby ensuring a proper balance between end protection and resection during DSB repair. The loss of THAP1-dependent SHLD1 expression confers cross-resistance to poly (ADP-ribose) polymerase (PARP) inhibitor and cisplatin in BRCA1-deficient cells and shorter progression-free survival in ovarian cancer patients. Moreover, the embryonic lethality and PARPi sensitivity of BRCA1-deficient mice is rescued by ablation of SHLD1. Our study uncovers a transcriptional network that directly controls DSB repair choice and suggests a potential link between DNA damage and pathogenic THAP1 mutations, found in patients with the neurodevelopmental movement disorder adult-onset torsion dystonia type 6.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN/genética , Distonía/genética , Femenino , Factor C1 de la Célula Huésped/metabolismo , Proteínas Mad2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reparación del ADN por Recombinación/efectos de los fármacos , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Factor de Transcripción YY1/metabolismo
3.
Mol Cell ; 77(1): 26-38.e7, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31653568

RESUMEN

53BP1 activity drives genome instability and lethality in BRCA1-deficient mice by inhibiting homologous recombination (HR). The anti-recombinogenic functions of 53BP1 require phosphorylation-dependent interactions with PTIP and RIF1/shieldin effector complexes. While RIF1/shieldin blocks 5'-3' nucleolytic processing of DNA ends, it remains unclear how PTIP antagonizes HR. Here, we show that mutation of the PTIP interaction site in 53BP1 (S25A) allows sufficient DNA2-dependent end resection to rescue the lethality of BRCA1Δ11 mice, despite increasing RIF1 "end-blocking" at DNA damage sites. However, double-mutant cells fail to complete HR, as excessive shieldin activity also inhibits RNF168-mediated loading of PALB2/RAD51. As a result, BRCA1Δ1153BP1S25A mice exhibit hallmark features of HR insufficiency, including premature aging and hypersensitivity to PARPi. Disruption of shieldin or forced targeting of PALB2 to ssDNA in BRCA1D1153BP1S25A cells restores RNF168 recruitment, RAD51 nucleofilament formation, and PARPi resistance. Our study therefore reveals a critical function of shieldin post-resection that limits the loading of RAD51.


Asunto(s)
Recombinación Homóloga/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Proteína BRCA1/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Recombinación Homóloga/efectos de los fármacos , Ratones , Mutación/efectos de los fármacos , Mutación/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Recombinasa Rad51/genética , Ubiquitina-Proteína Ligasas/genética
4.
Mol Cell ; 69(6): 1046-1061.e5, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547717

RESUMEN

A single mutagen can generate multiple different types of DNA lesions. How different repair pathways cooperate in complex DNA lesions, however, remains largely unclear. Here we measured, clustered, and modeled the kinetics of recruitment and dissociation of 70 DNA repair proteins to laser-induced DNA damage sites in HeLa cells. The precise timescale of protein recruitment reveals that error-prone translesion polymerases are considerably delayed compared to error-free polymerases. We show that this is ensured by the delayed recruitment of RAD18 to double-strand break sites. The time benefit of error-free polymerases disappears when PARP inhibition significantly delays PCNA recruitment. Moreover, removal of PCNA from complex DNA damage sites correlates with RPA loading during 5'-DNA end resection. Our systematic study of the dynamics of DNA repair proteins in complex DNA lesions reveals the multifaceted coordination between the repair pathways and provides a kinetics-based resource to study genomic instability and anticancer drug impact.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Inestabilidad Genómica , Células HeLa , Humanos , Cinética , Modelos Genéticos , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
5.
Nucleic Acids Res ; 52(15): 8815-8832, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38953163

RESUMEN

The efficiency and outcome of CRISPR/Cas9 editing depends on the chromatin state at the cut site. It has been shown that changing the chromatin state can influence both the efficiency and repair outcome, and epigenetic drugs have been used to improve Cas9 editing. However, because the target proteins of these drugs are not homogeneously distributed across the genome, the efficacy of these drugs may be expected to vary from locus to locus. Here, we systematically analyzed this chromatin context-dependency for 160 epigenetic drugs. We used a human cell line with 19 stably integrated reporters to induce a double-stranded break in different chromatin environments. We then measured Cas9 editing efficiency and repair pathway usage by sequencing the mutational signatures. We identified 58 drugs that modulate Cas9 editing efficiency and/or repair outcome dependent on the local chromatin environment. For example, we find a subset of histone deacetylase inhibitors that improve Cas9 editing efficiency throughout all types of heterochromatin (e.g. PCI-24781), while others were only effective in euchromatin and H3K27me3-marked regions (e.g. apicidin). In summary, this study reveals that most epigenetic drugs alter CRISPR editing in a chromatin-dependent manner, and provides a resource to improve Cas9 editing more selectively at the desired location.


Asunto(s)
Sistemas CRISPR-Cas , Cromatina , Epigénesis Genética , Edición Génica , Inhibidores de Histona Desacetilasas , Humanos , Edición Génica/métodos , Epigénesis Genética/efectos de los fármacos , Cromatina/metabolismo , Cromatina/genética , Inhibidores de Histona Desacetilasas/farmacología , Reparación del ADN , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Línea Celular , Histonas/metabolismo , Eucromatina/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos
6.
Drug Resist Updat ; 74: 101085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636338

RESUMEN

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.


Asunto(s)
Roturas del ADN de Doble Cadena , Resistencia a Antineoplásicos , Recombinación Homóloga , Quinasa Syk , Quinasa Syk/metabolismo , Quinasa Syk/genética , Quinasa Syk/antagonistas & inhibidores , Humanos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Femenino , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Fosforilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Reparación del ADN/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos
7.
J Biol Chem ; 299(6): 104800, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37164156

RESUMEN

For cells, it is important to repair DNA damage, such as double-strand and single-strand DNA breaks, because unrepaired DNA can compromise genetic integrity, potentially leading to cell death or cancer. Cells have multiple DNA damage repair pathways that have been the subject of detailed genetic, biochemical, and structural studies. Recently, the scientific community has started to gain evidence that the repair of DNA double-strand breaks may occur within biomolecular condensates and that condensates may also contribute to DNA damage through concentrating genotoxic agents used to treat various cancers. Here, we summarize key features of biomolecular condensates and note where they have been implicated in the repair of DNA double-strand breaks. We also describe evidence suggesting that condensates may be involved in the repair of other types of DNA damage, including single-strand DNA breaks, nucleotide modifications (e.g., mismatch and oxidized bases), and bulky lesions, among others. Finally, we discuss old and new mysteries that could now be addressed considering the properties of condensates, including chemoresistance mechanisms.


Asunto(s)
Reparación del ADN , ADN , Resistencia a Antineoplásicos , ADN/química , ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Roturas del ADN de Cadena Simple/efectos de los fármacos , Disparidad de Par Base/efectos de los fármacos
8.
Br J Cancer ; 131(3): 577-588, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866962

RESUMEN

BACKGROUND: Poly (ADP-ribose) polymerase inhibitors (PARPis) can effectively treat ovarian cancer patients with defective homologous recombination (HR). Loss or dysfunction of PTEN, a typical tumour suppressor, impairs double-strand break (DSB) repair. Hence, we explored the possibility of inhibiting PTEN to induce HR deficiency (HRD) for PARPi application. METHODS: Functional studies using PTEN inhibitor VO-OHpic and PARPi olaparib were performed to explore the molecular mechanisms in vitro and in vivo. RESULTS: In this study, the combination of VO-OHpic with olaparib exhibited synergistic inhibitory effects on ovarian cancer cells was demonstrated. Furthermore, VO-OHpic was shown to enhance DSBs by reducing nuclear expression of PTEN and inhibiting HR repair through the modulation of MRE11-RAD50-NBN (MRN) complex, critical for DSB repair. TCGA and GTEx analysis revealed a strong correlation between PTEN and MRN in ovarian cancer. Mechanistic studies indicated that VO-OHpic reduced expression of MRN, likely by decreasing PTEN/E2F1-mediated transcription. Moreover, PTEN-knockdown inhibited expression of MRN, increased sensitivities to olaparib, and induced DSBs. In vivo experiments showed that the combination of VO-OHpic with olaparib exhibited enhanced inhibitory effects on tumour growth. CONCLUSIONS: Collectively, this study highlights the potential of PTEN inhibitors in combination therapy with PARPis to create HRD for HRD-negative ovarian cancers.


Asunto(s)
Ácido Anhídrido Hidrolasas , Proteína Homóloga de MRE11 , Neoplasias Ováricas , Fosfohidrolasa PTEN , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Femenino , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ftalazinas/farmacología , Animales , Ratones , Línea Celular Tumoral , Piperazinas/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Sinergismo Farmacológico , Roturas del ADN de Doble Cadena/efectos de los fármacos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/antagonistas & inhibidores
9.
Mol Med ; 30(1): 54, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649802

RESUMEN

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Asunto(s)
Bleomicina , Senescencia Celular , Reparación del ADN , Recombinasa Rad51 , Bleomicina/efectos adversos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Animales , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Humanos , Ratones , Reparación del ADN/efectos de los fármacos , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Células A549 , Daño del ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos
10.
Pharmacol Res ; 203: 107165, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561112

RESUMEN

The clinical use of the DNA damaging anticancer drug doxorubicin (DOX) is limited by irreversible cardiotoxicity, which depends on the cumulative dose. The RAS-homologous (RHO) small GTPase RAC1 contributes to DOX-induced DNA damage formation and cardiotoxicity. However, the pathophysiological relevance of other RHO GTPases than RAC1 and different cardiac cell types (i.e., cardiomyocytes, non-cardiomyocytes) for DOX-triggered cardiac damage is unclear. Employing diverse in vitro and in vivo models, we comparatively investigated the level of DOX-induced DNA damage in cardiomyocytes versus non-cardiomyocytes (endothelial cells and fibroblasts), in the presence or absence of selected RHO GTPase inhibitors. Non-cardiomyocytes exhibited the highest number of DOX-induced DNA double-strand breaks (DSB), which were efficiently repaired in vitro. By contrast, rather low levels of DSB were formed in cardiomyocytes, which however remained largely unrepaired. Moreover, DOX-induced apoptosis was detected only in non-cardiomyocytes but not in cardiomyocytes. Pharmacological inhibitors of RAC1 and CDC42 most efficiently attenuated DOX-induced DNA damage in all cell types examined in vitro. Consistently, immunohistochemical analyses revealed that the RAC1 inhibitor NSC23766 and the pan-RHO GTPase inhibitor lovastatin reduced the level of DOX-induced residual DNA damage in both cardiomyocytes and non-cardiomyocytes in vivo. Overall, we conclude that endothelial cells, fibroblasts and cardiomyocytes contribute to the pathophysiology of DOX-induced cardiotoxicity, with RAC1- and CDC42-regulated signaling pathways being especially relevant for DOX-stimulated DSB formation and DNA damage response (DDR) activation. Hence, we suggest dual targeting of RAC1/CDC42-dependent mechanisms in multiple cardiac cell types to mitigate DNA damage-dependent cardiac injury evoked by DOX-based anticancer therapy.


Asunto(s)
Aminoquinolinas , Doxorrubicina , Células Endoteliales , Fibroblastos , Miocitos Cardíacos , Pirimidinas , Proteína de Unión al GTP cdc42 , Proteína de Unión al GTP rac1 , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Proteína de Unión al GTP cdc42/metabolismo , Doxorrubicina/toxicidad , Doxorrubicina/efectos adversos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Células Endoteliales/metabolismo , Cardiotoxicidad , Antibióticos Antineoplásicos/toxicidad , Ratones , Apoptosis/efectos de los fármacos , Masculino , Humanos , Ratones Endogámicos C57BL , Roturas del ADN de Doble Cadena/efectos de los fármacos , Neuropéptidos/metabolismo , Daño del ADN/efectos de los fármacos , Células Cultivadas
11.
Nature ; 553(7687): 171-177, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323295

RESUMEN

Haematopoietic stem cells renew blood. Accumulation of DNA damage in these cells promotes their decline, while misrepair of this damage initiates malignancies. Here we describe the features and mutational landscape of DNA damage caused by acetaldehyde, an endogenous and alcohol-derived metabolite. This damage results in DNA double-stranded breaks that, despite stimulating recombination repair, also cause chromosome rearrangements. We combined transplantation of single haematopoietic stem cells with whole-genome sequencing to show that this damage occurs in stem cells, leading to deletions and rearrangements that are indicative of microhomology-mediated end-joining repair. Moreover, deletion of p53 completely rescues the survival of aldehyde-stressed and mutated haematopoietic stem cells, but does not change the pattern or the intensity of genome instability within individual stem cells. These findings characterize the mutation of the stem-cell genome by an alcohol-derived and endogenous source of DNA damage. Furthermore, we identify how the choice of DNA-repair pathway and a stringent p53 response limit the transmission of aldehyde-induced mutations in stem cells.


Asunto(s)
Acetaldehído/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Etanol/metabolismo , Etanol/farmacología , Inestabilidad Genómica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Mutación , Alcohol Deshidrogenasa/deficiencia , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Reparación del ADN por Unión de Extremidades , Etanol/administración & dosificación , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Femenino , Eliminación de Gen , Genes p53/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Autoantígeno Ku/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reparación del ADN por Recombinación/efectos de los fármacos , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del Genoma
12.
Mol Cell ; 64(2): 405-415, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27746018

RESUMEN

The Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex orchestrates the cellular response to DSBs through its structural, enzymatic, and signaling roles. Xrs2/Nbs1 is essential for nuclear translocation of Mre11, but its role as a component of the complex is not well defined. Here, we demonstrate that nuclear localization of Mre11 (Mre11-NLS) is able to bypass several functions of Xrs2, including DNA end resection, meiosis, hairpin resolution, and cellular resistance to clastogens. Using purified components, we show that the MR complex has equivalent activity to MRX in cleavage of protein-blocked DNA ends. Although Xrs2 physically interacts with Sae2, we found that end resection in its absence remains Sae2 dependent in vivo and in vitro. MRE11-NLS was unable to rescue the xrs2Δ defects in Tel1/ATM kinase signaling and non-homologous end joining, consistent with the role of Xrs2 as a chaperone and adaptor protein coordinating interactions between the MR complex and other repair proteins.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Camptotecina/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/deficiencia , Endonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilmetanosulfonato/farmacología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
13.
Mol Cell ; 64(3): 580-592, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814490

RESUMEN

The Mre11/Rad50/Nbs1 complex initiates double-strand break repair by homologous recombination (HR). Loss of Mre11 or its nuclease activity in mouse cells is known to cause genome aberrations and cellular senescence, although the molecular basis for this phenotype is not clear. To identify the origin of these defects, we characterized Mre11-deficient (MRE11-/-) and nuclease-deficient Mre11 (MRE11-/H129N) chicken DT40 and human lymphoblast cell lines. These cells exhibit increased spontaneous chromosomal DSBs and extreme sensitivity to topoisomerase 2 poisons. The defects in Mre11 compromise the repair of etoposide-induced Top2-DNA covalent complexes, and MRE11-/- and MRE11-/H129N cells accumulate high levels of Top2 covalent conjugates even in the absence of exogenous damage. We demonstrate that both the genome instability and mortality of MRE11-/- and MRE11-/H129N cells are significantly reversed by overexpression of Tdp2, an enzyme that eliminates covalent Top2 conjugates; thus, the essential role of Mre11 nuclease activity is likely to remove these lesions.


Asunto(s)
Antígenos de Neoplasias/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , ADN/genética , Proteínas Nucleares/genética , Reparación del ADN por Recombinación/efectos de los fármacos , Factores de Transcripción/genética , Ácido Anhídrido Hidrolasas , Animales , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Pollos , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Etopósido/farmacología , Regulación de la Expresión Génica , Inestabilidad Genómica/efectos de los fármacos , Humanos , Linfocitos/citología , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Proteína Homóloga de MRE11 , Mutación , Proteínas Nucleares/metabolismo , Hidrolasas Diéster Fosfóricas , Proteínas de Unión a Poli-ADP-Ribosa , Transducción de Señal , Inhibidores de Topoisomerasa II/farmacología , Factores de Transcripción/metabolismo
14.
Cell Biochem Funct ; 42(7): e4115, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39264203

RESUMEN

In this study, the protective effects of Panax notoginseng saponins (PNS) against gamma radiation-induced DNA damage and associated physiological alterations in Swiss albino mice were investigated. Exposure to gamma radiation led to a dose-dependent increase in cytokinesis-blocked micronuclei (CBMN) double-strand DNA breaks (DSBs), dicentric aberrations (DC), formation in peripheral blood mononuclear cells. However, pretreatment with PNS at concentrations of 1, 5, and 10 µg/mL significantly attenuated the frequencies of DC and CBMN in a concentration-dependent manner. PNS administration before radiation exposure also reduced radiation-induced DSBs in BL, indicating protection against reactive oxygen species generation and DNA damage. Notably, pretreatment with PNS at 10 µg/mL prevented the overexpression of γ-H2AX, proteins associated with DNA damage response, in irradiated mice. In addition, in vivo studies showed intraperitoneal administration of PNS (25 mg/kg body weight) for 1 h before radiation exposure mitigated lipid peroxidation levels and restored antioxidant status, countering oxidative damage induced by gamma radiation. Furthermore, PNS pretreatment reversed the decrease in hemoglobin (Hb) content, white blood cell count, and red blood cell count in irradiated mice, indicating preservation of hematological parameters. Overall, PNS demonstrated an anticlastogenic effect by modulating radiation-induced DSBs and preventing oxidative damage, thus highlighting its potential as a protective agent against radiation-induced DNA damage and associated physiological alterations. Clinically, PNS will be beneficial for cancer patients undergoing radiotherapy, but their pharmacological properties and toxicity profiles need to be studied.


Asunto(s)
Rayos gamma , Panax notoginseng , Saponinas , Animales , Rayos gamma/efectos adversos , Saponinas/farmacología , Ratones , Panax notoginseng/química , Humanos , Masculino , Daño del ADN/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Protectores contra Radiación/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología
15.
Arch Toxicol ; 98(7): 2085-2100, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38619592

RESUMEN

Thallium (Tl) and its two cationic species, Tl(I) and Tl(III), are toxic for most living beings. In this work, we investigated the effects of Tl (10-100 µM) on the viability and proliferation capacity of the adherent variant of PC12 cells (PC12 Adh cells). While both Tl(I) and Tl(III) halted cell proliferation from 24 h of incubation, their viability was ~ 90% even after 72 h of treatment. At 24 h, increased levels of γH2AX indicated the presence of DNA double-strand breaks. Simultaneously, increased expression of p53 and its phosphorylation at Ser15 were observed, which were associated with decreased levels of p-AKTSer473 and p-mTORSer2448. At 72 h, the presence of large cytoplasmic vacuoles together with increased autophagy predictor values suggested that Tl may induce autophagy in these cells. This hypothesis was corroborated by images obtained by transmission electron microscopy (TEM) and from the decreased expression at 72 h of incubation of SQSTM-1 and increased LC3ß-II to LC3ß-I ratio. TEM images also showed enlarged ER that, together with the increased expression of IRE1-α from 48 h of incubation, indicated that Tl-induced ER stress preceded autophagy. The inhibition of autophagy flux with chloroquine increased cell mortality, suggesting that autophagy played a cytoprotective role in Tl toxicity in these cells. Together, results indicate that Tl(I) or Tl(III) are genotoxic to PC12 Adh cells which respond to the cations inducing ER stress and cytoprotective autophagy.


Asunto(s)
Autofagia , Proliferación Celular , Supervivencia Celular , Estrés del Retículo Endoplásmico , Talio , Autofagia/efectos de los fármacos , Células PC12 , Animales , Ratas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Talio/toxicidad , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fosforilación , Microscopía Electrónica de Transmisión
16.
Arch Toxicol ; 98(9): 2953-2969, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38814333

RESUMEN

Tert-butyl hydroperoxide (t-BuOOH) is an organic hydroperoxide widely used as a model compound to induce oxidative stress. It leads to a plethora of cellular damage, including lipid peroxidation, DNA double-strand breaks (DNA DSBs), and breakdown of the mitochondrial membrane potential (MMP). We could show in several cell lines that t-BuOOH induces ferroptosis, triggered by iron-dependent lipid peroxidation. We have further revealed that not only t-BuOOH-mediated ferroptosis, but also DNA DSBs and loss of MMP are prevented by cell-cell contacts. The underlying mechanisms are not known. Here, we show in murine fibroblasts and a human colon carcinoma cell line that t-BuOOH (50 or 100 µM, resp.) causes an increase in intracellular Ca2+, and that this increase is key to lipid peroxidation and ferroptosis, DNA DSB formation and dissipation of the MMP. We further demonstrate that cell-cell contacts prevent t-BuOOH-mediated raise in intracellular Ca2+. Hence, we provide novel insights into the mechanism of t-BuOOH-triggered cellular damage including ferroptosis and propose a model in which cell-cell contacts control intracellular Ca2+ levels to prevent lipid peroxidation, DNA DSB-formation and loss of MMP. Since Ca2+ is a central player of toxicity in response to oxidative stress and is involved in various cell death pathways, our observations suggest a broad protective function of cell-cell contacts against a variety of exogenous toxicants.


Asunto(s)
Calcio , Roturas del ADN de Doble Cadena , Ferroptosis , Peroxidación de Lípido , Potencial de la Membrana Mitocondrial , terc-Butilhidroperóxido , Ferroptosis/efectos de los fármacos , Calcio/metabolismo , Humanos , terc-Butilhidroperóxido/toxicidad , Animales , Peroxidación de Lípido/efectos de los fármacos , Ratones , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Línea Celular Tumoral
17.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33762306

RESUMEN

High levels of the intermediate filament protein keratin 17 (K17) are associated with poor prognoses for several human carcinomas. Studies in mouse models have shown that K17 expression is positively associated with growth, survival, and inflammation in skin and that lack of K17 delays onset of tumorigenesis. K17 occurs in the nucleus of human and mouse tumor keratinocytes where it impacts chromatin architecture, gene expression, and cell proliferation. We report here that K17 is induced following DNA damage and promotes keratinocyte survival. The presence of nuclear K17 is required at an early stage of the double-stranded break (DSB) arm of the DNA damage and repair (DDR) cascade, consistent with its ability to associate with key DDR effectors, including γ-H2A.X, 53BP1, and DNA-PKcs. Mice lacking K17 or with attenuated K17 nuclear import showed curtailed initiation in a two-step skin carcinogenesis paradigm. The impact of nuclear-localized K17 on DDR and cell survival provides a basis for the link between K17 induction and poor clinical outcomes for several human carcinomas.


Asunto(s)
Carcinoma/genética , Reparación del ADN , Queratina-17/metabolismo , Queratinas/metabolismo , Neoplasias Experimentales/genética , 9,10-Dimetil-1,2-benzantraceno/administración & dosificación , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Transporte Activo de Núcleo Celular , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma/inducido químicamente , Carcinoma/patología , Núcleo Celular/metabolismo , Supervivencia Celular/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Femenino , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Microscopía Intravital , Queratina-17/genética , Queratinocitos , Queratinas/genética , Masculino , Ratones Noqueados , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/patología , Imagen de Lapso de Tiempo
18.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460408

RESUMEN

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Asunto(s)
Toxinas Marinas , Microcistinas , Sirtuinas , Espermatogonias , Animales , Masculino , Ratones , Apoptosis , Proliferación Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN , Toxinas Marinas/metabolismo , Toxinas Marinas/toxicidad , Ratones Endogámicos ICR , Microcistinas/metabolismo , Microcistinas/toxicidad , Semen , Sirtuinas/efectos de los fármacos , Sirtuinas/metabolismo , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo
19.
Genes Dev ; 30(22): 2500-2512, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27940962

RESUMEN

The retinoblastoma (RB) tumor suppressor is recognized as a master regulator that controls entry into the S phase of the cell cycle. Its loss leads to uncontrolled cell proliferation and is a hallmark of cancer. RB works by binding to members of the E2F family of transcription factors and recruiting chromatin modifiers to the promoters of E2F target genes. Here we show that RB also localizes to DNA double-strand breaks (DSBs) dependent on E2F1 and ATM kinase activity and promotes DSB repair through homologous recombination (HR), and its loss results in genome instability. RB is necessary for the recruitment of the BRG1 ATPase to DSBs, which stimulates DNA end resection and HR. A knock-in mutation of the ATM phosphorylation site on E2F1 (S29A) prevents the interaction between E2F1 and TopBP1 and recruitment of RB, E2F1, and BRG1 to DSBs. This knock-in mutation also impairs DNA repair, increases genomic instability, and renders mice hypersensitive to IR. Importantly, depletion of RB in osteosarcoma and breast cancer cell lines results in sensitivity to DNA-damaging drugs, which is further exacerbated by poly-ADP ribose polymerase (PARP) inhibitors. We uncovered a novel, nontranscriptional function for RB in HR, which could contribute to genome instability associated with RB loss.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Recombinación Homóloga/genética , Proteínas Nucleares/metabolismo , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Helicasas/genética , Reparación del ADN/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Rayos gamma , Técnicas de Sustitución del Gen , Inestabilidad Genómica/genética , Humanos , Masculino , Ratones , Mutágenos/farmacología , Mutación , Proteínas Nucleares/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Transporte de Proteínas/genética , Proteína de Retinoblastoma/genética , Factores de Transcripción/genética , Irradiación Corporal Total/mortalidad
20.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125763

RESUMEN

In clinics, chemotherapy is often combined with surgery and radiation to increase the chances of curing cancers. In the case of glioblastoma (GBM), patients are treated with a combination of radiotherapy and TMZ over several weeks. Despite its common use, the mechanism of action of the alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor cells that are mostly non-dividing. The cellular response to alkylating DNA damage is operated by an intricate protein network involving multiple DNA repair pathways and numerous checkpoint proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation state. Among the various alkylating damages, researchers have placed a special on O6-methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode of action. Initially, the mode of action of TMZ was proposed as follows: when left on the genome, O6-mG lesions form O6-mG: T mispairs during replication as T is preferentially mis-inserted across O6-mG. These O6-mG: T mispairs are recognized and tentatively repaired by a post-replicative mismatched DNA correction system (i.e., the MMR system). There are two models (futile cycle and direct signaling models) to account for the cytotoxic effects of the O6-mG lesions, both depending upon the functional MMR system in replicating cells. Alternatively, to explain the cytotoxic effects of alkylating agents in non-replicating cells, we have proposed a "repair accident model" whose molecular mechanism is dependent upon crosstalk between the MMR and the base excision repair (BER) systems. The accidental encounter between these two repair systems will cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize these non-exclusive models to explain the cytotoxic effects of alkylating agents and discuss potential strategies to improve the clinical use of alkylating agents.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Reparación del ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Alquilación , Temozolomida/farmacología , ADN/metabolismo , Antineoplásicos Alquilantes/farmacología , Animales , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA