Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.517
Filtrar
Más filtros

Colección BVS Ecuador
Intervalo de año de publicación
1.
N Engl J Med ; 391(5): 422-433, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38804512

RESUMEN

BACKGROUND: Minimal change disease and primary focal segmental glomerulosclerosis in adults, along with idiopathic nephrotic syndrome in children, are immune-mediated podocytopathies that lead to nephrotic syndrome. Autoantibodies targeting nephrin have been found in patients with minimal change disease, but their clinical and pathophysiological roles are unclear. METHODS: We conducted a multicenter study to analyze antinephrin autoantibodies in adults with glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, antineutrophil cytoplasmic antibody-associated glomerulonephritis, and lupus nephritis, as well as in children with idiopathic nephrotic syndrome and in controls. We also created an experimental mouse model through active immunization with recombinant murine nephrin. RESULTS: The study included 539 patients (357 adults and 182 children) and 117 controls. Among the adults, antinephrin autoantibodies were found in 46 of the 105 patients (44%) with minimal change disease, 7 of 74 (9%) with primary focal segmental glomerulosclerosis, and only in rare cases among the patients with other conditions. Of the 182 children with idiopathic nephrotic syndrome, 94 (52%) had detectable antinephrin autoantibodies. In the subgroup of patients with active minimal change disease or idiopathic nephrotic syndrome who were not receiving immunosuppressive treatment, the prevalence of antinephrin autoantibodies was as high as 69% and 90%, respectively. At study inclusion and during follow-up, antinephrin autoantibody levels were correlated with disease activity. Experimental immunization induced a nephrotic syndrome, a minimal change disease-like phenotype, IgG localization to the podocyte slit diaphragm, nephrin phosphorylation, and severe cytoskeletal changes in mice. CONCLUSIONS: In this study, circulating antinephrin autoantibodies were common in patients with minimal change disease or idiopathic nephrotic syndrome and appeared to be markers of disease activity. Their binding at the slit diaphragm induced podocyte dysfunction and nephrotic syndrome, which highlights their pathophysiological significance. (Funded by Deutsche Forschungsgemeinschaft and others.).


Asunto(s)
Autoanticuerpos , Proteínas de la Membrana , Podocitos , Adulto , Anciano , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Biopsia , Modelos Animales de Enfermedad , Glomerulonefritis por IGA/sangre , Glomerulonefritis por IGA/inmunología , Glomerulonefritis por IGA/patología , Glomeruloesclerosis Focal y Segmentaria/sangre , Glomeruloesclerosis Focal y Segmentaria/inmunología , Glomeruloesclerosis Focal y Segmentaria/patología , Nefritis Lúpica/sangre , Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , Proteínas de la Membrana/inmunología , Nefrosis Lipoidea/sangre , Nefrosis Lipoidea/inmunología , Nefrosis Lipoidea/patología , Síndrome Nefrótico/sangre , Síndrome Nefrótico/inmunología , Síndrome Nefrótico/patología , Podocitos/inmunología , Podocitos/patología
2.
Hum Mol Genet ; 33(8): 667-676, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38224683

RESUMEN

More than 60 monogenic genes mutated in steroid-resistant nephrotic syndrome (SRNS) have been identified. Our previous study found that mutations in nucleoporin 160 kD (NUP160) are implicated in SRNS. The NUP160 gene encodes a component of the nuclear pore complex. Recently, two siblings with homozygous NUP160 mutations presented with SRNS and a nervous system disorder. However, replication of nephrotic syndrome (NS)-associated phenotypes in a mammalian model following loss of Nup160 is needed to prove that NUP160 mutations cause SRNS. Here, we generated a podocyte-specific Nup160 knockout (Nup160podKO) mouse model using CRISPR/Cas9 and Cre/loxP technologies. We investigated NS-associated phenotypes in these Nup160podKO mice. We verified efficient abrogation of Nup160 in Nup160podKO mice at both the DNA and protein levels. We showed that Nup160podKO mice develop typical signs of NS. Nup160podKO mice exhibited progression of proteinuria to average albumin/creatinine ratio (ACR) levels of 15.06 ± 2.71 mg/mg at 26 weeks, and had lower serum albumin levels of 13.13 ± 1.34 g/l at 30 weeks. Littermate control mice had urinary ACR mean values of 0.03 mg/mg and serum albumin values of 22.89 ± 0.34 g/l at the corresponding ages. Further, Nup160podKO mice exhibited glomerulosclerosis compared with littermate control mice. Podocyte-specific Nup160 knockout in mice led to NS and glomerulosclerosis. Thus, our findings strongly support that mutations in NUP160 cause SRNS. The newly generated Nup160podKO mice are a reliable mammalian model for future study of the pathogenesis of NUP160-associated SRNS.


Asunto(s)
Síndrome Nefrótico , Podocitos , Animales , Ratones , Ratones Noqueados , Mutación , Síndrome Nefrótico/genética , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/patología , Proteinuria/genética , Albúmina Sérica/genética
3.
J Biol Chem ; 300(7): 107429, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825010

RESUMEN

Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.


Asunto(s)
Membrana Basal , Laminina , Humanos , Laminina/metabolismo , Laminina/química , Laminina/genética , Animales , Membrana Basal/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Deformidades Congénitas de las Extremidades/metabolismo , Deformidades Congénitas de las Extremidades/genética , Mutación , Síndrome Nefrótico , Trastornos de la Pupila , Síndromes Miasténicos Congénitos
4.
N Engl J Med ; 386(24): 2295-2302, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35704481

RESUMEN

Lifelong immunosuppression is required for allograft survival after kidney transplantation but may not ultimately prevent allograft loss resulting from chronic rejection. We developed an approach that attempts to abrogate immune rejection and the need for post-transplantation immunosuppression in three patients with Schimke immuno-osseous dysplasia who had both T-cell immunodeficiency and renal failure. Each patient received sequential transplants of αß T-cell-depleted and CD19 B-cell-depleted haploidentical hematopoietic stem cells and a kidney from the same donor. Full donor hematopoietic chimerism and functional ex vivo T-cell tolerance was achieved, and the patients continued to have normal renal function without immunosuppression at 22 to 34 months after kidney transplantation. (Funded by the Kruzn for a Kure Foundation.).


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Síndromes de Inmunodeficiencia , Trasplante de Riñón , Síndrome Nefrótico , Osteocondrodisplasias , Enfermedades de Inmunodeficiencia Primaria , Arteriosclerosis/genética , Arteriosclerosis/terapia , Rechazo de Injerto/prevención & control , Humanos , Síndromes de Inmunodeficiencia/terapia , Riñón/fisiología , Trasplante de Riñón/efectos adversos , Síndrome Nefrótico/genética , Síndrome Nefrótico/terapia , Osteocondrodisplasias/genética , Osteocondrodisplasias/terapia , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/terapia , Embolia Pulmonar/genética , Embolia Pulmonar/terapia , Acondicionamiento Pretrasplante/métodos
5.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417019

RESUMEN

Nephrotic syndrome (NS) is characterized by severe proteinuria as a consequence of kidney glomerular injury due to podocyte damage. In vitro models mimicking in vivo podocyte characteristics are a prerequisite to resolve NS pathogenesis. The detailed characterization of organoid podocytes resulting from a hybrid culture protocol showed a podocyte population that resembles adult podocytes and was superior compared with 2D counterparts, based on single-cell RNA sequencing, super-resolution imaging and electron microscopy. In this study, these next-generation podocytes in kidney organoids enabled personalized idiopathic nephrotic syndrome modeling, as shown by activated slit diaphragm signaling and podocyte injury following protamine sulfate, puromycin aminonucleoside treatment and exposure to NS plasma containing pathogenic permeability factors. Organoids cultured from cells of a patient with heterozygous NPHS2 mutations showed poor NPHS2 expression and aberrant NPHS1 localization, which was reversible after genetic correction. Repaired organoids displayed increased VEGFA pathway activity and transcription factor activity known to be essential for podocyte physiology, as shown by RNA sequencing. This study shows that organoids are the preferred model of choice to study idiopathic and congenital podocytopathies.


Asunto(s)
Síndrome Nefrótico , Células Madre Pluripotentes , Podocitos , Femenino , Humanos , Riñón/metabolismo , Masculino , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Organoides , Células Madre Pluripotentes/metabolismo , Podocitos/metabolismo , Podocitos/patología
6.
Natl Vital Stat Rep ; 72(13): 1-115, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38085308

RESUMEN

Objectives-This report presents final 2020 data on the 10 leading causes of death in the United States by age, race and Hispanic origin, and sex. Leading causes of infant, neonatal, and postneonatal death are also presented. This report supplements "Deaths: Final Data for 2020," the National Center for Health Statistics' annual report of final mortality statistics. Methods-Data in this report are based on information from all death certificates filed in the 50 states and the District of Columbia in 2020. Causes of death classified by the International Classification of Diseases, 10th Revision (ICD-10) are ranked according to the number of deaths. Cause-of-death statistics are based on the underlying cause of death. Race and Hispanicorigin data are based on the Office of Management and Budget's 1997 standards for reporting race and Hispanic origin. Results-In 2020, many of the 10 leading causes of death changed rank order due to the emergence of COVID-19 as a leading cause of death in the United States. The 10 leading causes of death in 2020 were, in rank order: Diseases of heart; Malignant neoplasms; COVID-19; Accidents (unintentional injuries); Cerebrovascular diseases; Chronic lower respiratory diseases; Alzheimer disease; Diabetes mellitus; Influenza and pneumonia; and Nephritis, nephrotic syndrome and nephrosis. They accounted for 74.1% of all deaths occurring in the United States. Differences in the rankings are evident by age, race and Hispanic origin, and sex. Leading causes of infant death for 2020 were, in rank order: Congenital malformations, deformations and chromosomal abnormalities; Disorders related to short gestation and low birth weight, not elsewhere classified; Sudden infant death syndrome; Accidents (unintentional injuries); Newborn affected by maternal complications of pregnancy; Newborn affected by complications of placenta, cord and membranes; Bacterial sepsis of newborn; Respiratory distress of newborn; Diseases of the circulatory system; and Neonatal hemorrhage.


Asunto(s)
Lesiones Accidentales , COVID-19 , Síndrome Nefrótico , Muerte Súbita del Lactante , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Estados Unidos/epidemiología , Causas de Muerte , Certificado de Defunción , Mortalidad Infantil
7.
Exp Cell Res ; 435(2): 113931, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253280

RESUMEN

The mortality rate linked with nephrotic syndrome (NS) is quite high. The renal tubular injury influences the response of NS patients to steroid treatment. KN motif and ankyrin repeat domains 2 (KANK2) regulates actin polymerization, which is required for renal tubular cells to maintain their function. In this study, we found that the levels of KANK2 in patients with NS were considerably lower than those in healthy controls, especially in NS patients with acute kidney injury (AKI). To get a deeper understanding of the KANK2 transcriptional control mechanism, the core promoter region of the KANK2 gene was identified. KANK2 was further found to be positively regulated by E2F Transcription Factor 1 (E2F1), Transcription Factor AP-2 Gamma (TFAP2C), and Nuclear Respiratory Factor 1 (NRF1), both at mRNA and protein levels. Knocking down E2F1, TFAP2C, or NRF1 deformed the cytoskeleton of renal tubular cells and reduced F-actin content. EMSA and ChIP assays confirmed that all three transcription factors could bind to the upstream promoter transcription site of KANK2 to transactivate KANK2 in renal tubular epithelial cells. Our study suggests that E2F1, TFAP2C, and NRF1 play essential roles in regulating the KANK2 transcription, therefore shedding fresh light on the development of putative therapeutic options for the treatment of NS patients.


Asunto(s)
Síndrome Nefrótico , Factor Nuclear 1 de Respiración , Humanos , Factor Nuclear 1 de Respiración/metabolismo , Síndrome Nefrótico/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción AP-2/genética
8.
Proc Natl Acad Sci U S A ; 119(35): e2116505119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994650

RESUMEN

Albuminuria is a hallmark of glomerular disease of various etiologies. It is not only a symptom of glomerular disease but also a cause leading to glomerulosclerosis, interstitial fibrosis, and eventually, a decline in kidney function. The molecular mechanism underlying albuminuria-induced kidney injury remains poorly defined. In our genetic model of nephrotic syndrome (NS), we have identified CHOP (C/EBP homologous protein)-TXNIP (thioredoxin-interacting protein) as critical molecular linkers between albuminuria-induced ER dysfunction and mitochondria dyshomeostasis. TXNIP is a ubiquitously expressed redox protein that binds to and inhibits antioxidant enzyme, cytosolic thioredoxin 1 (Trx1), and mitochondrial Trx2. However, very little is known about the regulation and function of TXNIP in NS. By utilizing Chop-/- and Txnip-/- mice as well as 68Ga-Galuminox, our molecular imaging probe for detection of mitochondrial reactive oxygen species (ROS) in vivo, we demonstrate that CHOP up-regulation induced by albuminuria drives TXNIP shuttling from nucleus to mitochondria, where it is required for the induction of mitochondrial ROS. The increased ROS accumulation in mitochondria oxidizes Trx2, thus liberating TXNIP to associate with mitochondrial nod-like receptor protein 3 (NLRP3) to activate inflammasome, as well as releasing mitochondrial apoptosis signal-regulating kinase 1 (ASK1) to induce mitochondria-dependent apoptosis. Importantly, inhibition of TXNIP translocation and mitochondrial ROS overproduction by CHOP deletion suppresses NLRP3 inflammasome activation and p-ASK1-dependent mitochondria apoptosis in NS. Thus, targeting TXNIP represents a promising therapeutic strategy for the treatment of NS.


Asunto(s)
Albuminuria , Proteínas Portadoras , Riñón , Mitocondrias , Síndrome Nefrótico , Tiorredoxinas , Factor de Transcripción CHOP , Albuminuria/complicaciones , Albuminuria/genética , Albuminuria/prevención & control , Animales , Apoptosis , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Eliminación de Gen , Inflamasomas/metabolismo , Riñón/metabolismo , Riñón/patología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Síndrome Nefrótico/complicaciones , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Síndrome Nefrótico/prevención & control , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Factor de Transcripción CHOP/deficiencia , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
9.
J Proteome Res ; 23(6): 2090-2099, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38728052

RESUMEN

Idiopathic nephrotic syndrome (NS) is a heterogeneous group of glomerular disorders which includes two major phenotypes: minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). MCD and FSGS are classic types of primary podocytopathies. We aimed to explore the molecular mechanisms in NS triggered by primary podocytopathies and evaluate diagnostic value of the selected proteomic signatures by analyzing blood proteome profiling. Totally, we recruited 90 participants in two cohorts. The first cohort was analyzed using label-free quantitative (LFQ) proteomics to discover differential expressed proteins and identify enriched biological process in NS which were further studied in relation to clinical markers of kidney injury. The second cohort was analyzed using parallel reaction monitoring-based quantitative proteomics to verify the data of LFQ proteomics and assess the diagnostic performance of the selected proteins using receiver-operating characteristic curve analysis. Several biological processes (such as immune response, cell adhesion, and response to hypoxia) were found to be associated with kidney injury during MCD and FSGS. Moreover, three proteins (CSF1, APOC3, and LDLR) had over 90% sensitivity and specificity in detecting adult NS triggered by primary podocytopathies. The identified biological processes may play a crucial role in MCD and FSGS pathogenesis. The three blood protein markers are promising for diagnosing adult NS triggered by primary podocytopathies.


Asunto(s)
Biomarcadores , Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Síndrome Nefrótico , Podocitos , Proteómica , Humanos , Síndrome Nefrótico/sangre , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/metabolismo , Proteómica/métodos , Adulto , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/sangre , Glomeruloesclerosis Focal y Segmentaria/patología , Femenino , Nefrosis Lipoidea/diagnóstico , Nefrosis Lipoidea/metabolismo , Masculino , Podocitos/metabolismo , Podocitos/patología , Biomarcadores/sangre , Proteoma/análisis , Persona de Mediana Edad , Estudios de Cohortes , Curva ROC
10.
Am J Physiol Renal Physiol ; 326(5): F780-F791, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38482553

RESUMEN

Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of chronic kidney disease before the age of 25 yr. Nephrin, encoded by NPHS1, localizes to the slit diaphragm of glomerular podocytes and is the predominant structural component of the glomerular filtration barrier. Biallelic variants in NPHS1 can cause congenital nephrotic syndrome of the Finnish type, for which, to date, no causative therapy is available. Recently, adeno-associated virus (AAV) vectors targeting the glomerular podocyte have been assessed as a means for gene replacement therapy. Here, we established quantitative and reproducible phenotyping of a published, conditional Nphs1 knockout mouse model (Nphs1tm1.1Pgarg/J and Nphs2-Cre+) in preparation for a gene replacement study using AAV vectors. Nphs1 knockout mice (Nphs1fl/fl Nphs2-Cre+) exhibited 1) a median survival rate of 18 days (range: from 9 to 43 days; males: 16.5 days and females: 20 days); 2) an average foot process (FP) density of 1.0 FP/µm compared with 2.0 FP/µm in controls and a mean filtration slit density of 2.64 µm/µm2 compared with 4.36 µm/µm2 in controls; 3) a high number of proximal tubular microcysts; 4) the development of proteinuria within the first week of life as evidenced by urine albumin-to-creatinine ratios; and 5) significantly reduced levels of serum albumin and elevated blood urea nitrogen and creatinine levels. For none of these phenotypes, significant differences between sexes in Nphs1 knockout mice were observed. We quantitatively characterized five different phenotypic features of congenital nephrotic syndrome in Nphs1fl/fl Nphs2-Cre+ mice. Our results will facilitate future gene replacement therapy projects by allowing for sensitive detection of even subtle molecular effects.NEW & NOTEWORTHY To evaluate potential, even subtle molecular, therapeutic effects of gene replacement therapy (GRT) in a mouse model, prior rigorous quantifiable and reproducible disease phenotyping is necessary. Here, we, therefore, describe such a phenotyping effort in nephrin (Nphs1) knockout mice to establish the basis for GRT for congenital nephrotic syndrome. We believe that our findings set an important basis for upcoming/ongoing gene therapy approaches in the field of nephrology, especially for monogenic nephrotic syndrome.


Asunto(s)
Proteínas de la Membrana , Síndrome Nefrótico , Podocitos , Animales , Femenino , Masculino , Ratones , Modelos Animales de Enfermedad , Terapia Genética/métodos , Vectores Genéticos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Síndrome Nefrótico/genética , Síndrome Nefrótico/terapia , Fenotipo , Podocitos/metabolismo
11.
Kidney Int ; 105(4): 663-665, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519231

RESUMEN

In the current issue, Kuzmuk et al. offer a therapeutic option for patients with NPHS2 R138Q-associated nephrotic syndrome. For the first time in hereditary podocytopathies, this is offered by restoring the membrane targeting of a pathogenic protein. The idea that it is enough to liberate podocin from the trap of keratin 8, a key member of endoplasmic-reticulum-associated protein degradation complex, was brilliantly recognized based on former results obtained in cystic fibrosis.


Asunto(s)
Queratinas , Síndrome Nefrótico , Humanos , Queratinas/uso terapéutico , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Mutación
12.
Kidney Int ; 105(2): 218-230, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245210

RESUMEN

Glomerular diseases are classified using a descriptive taxonomy that is not reflective of the heterogeneous underlying molecular drivers. This limits not only diagnostic and therapeutic patient management, but also impacts clinical trials evaluating targeted interventions. The Nephrotic Syndrome Study Network (NEPTUNE) is poised to address these challenges. The study has enrolled >850 pediatric and adult patients with proteinuric glomerular diseases who have contributed to deep clinical, histologic, genetic, and molecular profiles linked to long-term outcomes. The NEPTUNE Knowledge Network, comprising combined, multiscalar data sets, captures each participant's molecular disease processes at the time of kidney biopsy. In this editorial, we describe the design and implementation of NEPTUNE Match, which bridges a basic science discovery pipeline with targeted clinical trials. Noninvasive biomarkers have been developed for real-time pathway analyses. A Molecular Nephrology Board reviews the pathway maps together with clinical, laboratory, and histopathologic data assembled for each patient to compile a Match report that estimates the fit between the specific molecular disease pathway(s) identified in an individual patient and proposed clinical trials. The NEPTUNE Match report is communicated using established protocols to the patient and the attending nephrologist for use in their selection of available clinical trials. NEPTUNE Match represents the first application of precision medicine in nephrology with the aim of developing targeted therapies and providing the right medication for each patient with primary glomerular disease.


Asunto(s)
Enfermedades Renales , Síndrome Nefrótico , Adulto , Niño , Humanos , Biomarcadores , Ensayos Clínicos como Asunto , Glomérulos Renales/patología , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/genética , Síndrome Nefrótico/terapia
13.
Kidney Int ; 105(5): 1113-1123, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360110

RESUMEN

Initial therapies for children with frequently relapsing nephrotic syndrome include alternate-day prednisolone that is given daily during infections, or levamisole. In this open label, non-inferiority trial, 160 patients, 2 to 18-years-old with frequent relapses, were randomly assigned to receive either prednisolone (0.5-0.7 mg/kg/alternate-day, given daily during infections), or levamisole (2-2.5 mg/kg/alternate-days) for one-year. Patients with relapses on alternate day prednisolone at over 1 mg/kg, prior use of potent steroid-sparing therapies, eGFR under 60 ml/min/1.73 m2 and significant steroid toxicity were excluded. Primary outcome was the proportion of patients with frequent relapses, defined as three-relapses in one-year, or two-relapses within six-months if associated with significant steroid toxicity or loss to follow up. Eighty patients each were randomized to receive prednisolone and levamisole. Baseline features showed preponderance of young patients presenting within two-years of disease onset. On intention-to-treat analysis, frequent relapses were more common in patients administered prednisolone (40% versus 22.5%; risk difference 17.5%; 95% confidence interval 3.4-31.6%). Prednisolone was not non-inferior to levamisole in preventing frequent relapses. However, the two groups showed similar proportions of patients in sustained remission, comparable frequency of relapses, and low frequency of adverse events. The decline in steroid requirement from baseline was higher in the levamisole group. Per-protocol analysis showed similar results. These results have implications for choice of therapy for frequently relapsing nephrotic syndrome. Although therapy with alternate-day prednisolone was not non-inferior to levamisole in preventing frequent relapses, both therapies were effective in other outcome measures. Thus, levamisole was relatively steroid-sparing and may be preferred in patients at risk of steroid toxicity.


Asunto(s)
Síndrome Nefrótico , Prednisolona , Niño , Humanos , Preescolar , Adolescente , Prednisolona/efectos adversos , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/inducido químicamente , Levamisol/efectos adversos , Inmunosupresores/efectos adversos , Recurrencia
14.
Kidney Int ; 105(5): 932-934, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642993

RESUMEN

In the current issue of Kidney International, Sinha et al. present data from an open-label, noninferior, randomized controlled trial comparing 12-months of alternate-day prednisolone, given daily during infection, versus levamisole, in children with frequently relapsing or steroid-dependent nephrotic syndrome. This study suggests that both of these strategies are efficacious and safe. Results of this study should redefine the role of levamisole in future guidelines, and a call for global availability of levamisole should be advocated.


Asunto(s)
Levamisol , Síndrome Nefrótico , Niño , Humanos , Levamisol/efectos adversos , Síndrome Nefrótico/tratamiento farmacológico , Prednisolona , Glucocorticoides , Recurrencia
15.
Kidney Int ; 105(4): 744-758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37995908

RESUMEN

Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.


Asunto(s)
Síndrome Nefrótico , Animales , Niño , Humanos , Ratones , Péptidos y Proteínas de Señalización Intracelular/genética , Queratina-8/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Mutación , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología
16.
Kidney Int ; 105(3): 450-463, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142038

RESUMEN

Focal segmental glomerular sclerosis (FSGS) is 1 of the primary causes of nephrotic syndrome in both pediatric and adult patients, which can lead to end-stage kidney disease. Recurrence of FSGS after kidney transplantation significantly increases allograft loss, leading to morbidity and mortality. Currently, there are no consensus guidelines for identifying those patients who are at risk for recurrence or for the management of recurrent FSGS. Our work group performed a literature search on PubMed/Medline, Embase, and Cochrane, and recommendations were proposed and graded for strength of evidence. Of the 614 initially identified studies, 221 were found suitable to formulate consensus guidelines for recurrent FSGS. These guidelines focus on the definition, epidemiology, risk factors, pathogenesis, and management of recurrent FSGS. We conclude that additional studies are required to strengthen the recommendations proposed in this review.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Trasplante de Riñón , Síndrome Nefrótico , Adulto , Humanos , Niño , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/epidemiología , Glomeruloesclerosis Focal y Segmentaria/etiología , Esclerosis/complicaciones , Trasplante de Riñón/efectos adversos , Trasplante Homólogo/efectos adversos , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/etiología , Síndrome Nefrótico/terapia , Recurrencia , Plasmaféresis
17.
Am J Hum Genet ; 108(2): 357-367, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508234

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.


Asunto(s)
Proteínas Portadoras/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Espacio Intranuclear/metabolismo , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Proteínas del Tejido Nervioso/genética , Adulto , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular , Niño , Preescolar , Codón sin Sentido , Discapacidades del Desarrollo/metabolismo , Epilepsia/metabolismo , Femenino , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Riñón/metabolismo , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Podocitos/metabolismo , Secuenciación del Exoma
18.
Lancet ; 402(10404): 809-824, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37659779

RESUMEN

Idiopathic nephrotic syndrome is the most common glomerular disease in children. Corticosteroids are the cornerstone of its treatment, and steroid response is the main prognostic factor. Most children respond to a cycle of oral steroids, and are defined as having steroid-sensitive nephrotic syndrome. Among the children who do not respond, defined as having steroid-resistant nephrotic syndrome, most respond to second-line immunosuppression, mainly with calcineurin inhibitors, and children in whom a response is not observed are described as multidrug resistant. The pathophysiology of nephrotic syndrome remains elusive. In cases of immune-mediated origin, dysregulation of immune cells and production of circulating factors that damage the glomerular filtration barrier have been described. Conversely, up to a third of cases of steroid-resistant nephrotic syndrome have a monogenic origin. Multidrug resistant nephrotic syndrome often leads to kidney failure and can cause relapse after kidney transplant. Although steroid-sensitive nephrotic syndrome does not affect renal function, most children with steroid-sensitive nephrotic syndrome have a relapsing course that requires repeated steroid cycles with significant side-effects. To minimise morbidity, some patients require steroid-sparing immunosuppressive agents, including levamisole, mycophenolate mofetil, calcineurin inhibitors, anti-CD20 monoclonal antibodies, and cyclophosphamide. Close monitoring and preventive measures are warranted at onset and during relapse to prevent acute complications (eg, hypovolaemia, acute kidney injury, infections, and thrombosis), whereas long-term management requires minimising treatment-related side-effects. A subset of patients have active disease into adulthood.


Asunto(s)
Lesión Renal Aguda , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Síndrome Nefrótico , Niño , Humanos , Síndrome Nefrótico/tratamiento farmacológico , Inhibidores de la Calcineurina/uso terapéutico , Ciclofosfamida , Inmunosupresores/uso terapéutico
19.
J Clin Immunol ; 44(8): 180, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153074

RESUMEN

Schimke immuno-osseous dysplasia is a rare multisystemic disorder caused by biallelic loss of function of the SMARCAL1 gene that plays a pivotal role in replication fork stabilization and thus DNA repair. Individuals affected from this disease suffer from disproportionate growth failure, steroid resistant nephrotic syndrome leading to renal failure and primary immunodeficiency mediated by T cell lymphopenia. With infectious complications being the leading cause of death in this disease, researching the nature of the immunodeficiency is crucial, particularly as the state is exacerbated by loss of antibodies due to nephrotic syndrome or immunosuppressive treatment. Building on previous findings that identified the loss of IL-7 receptor expression as a possible cause of the immunodeficiency and increased sensitivity to radiation-induced damage, we have employed spectral cytometry and multiplex RNA-sequencing to assess the phenotype and function of T cells ex-vivo and to study changes induced by in-vitro UV irradiation and reaction of cells to the presence of IL-7. Our findings highlight the mature phenotype of T cells with proinflammatory Th1 skew and signs of exhaustion and lack of response to IL-7. UV light irradiation caused a severe increase in the apoptosis of T cells, however the expression of the genes related to immune response and regulation remained surprisingly similar to healthy cells. Due to the disease's rarity, more studies will be necessary for complete understanding of this unique immunodeficiency.


Asunto(s)
Reparación del ADN , Osteocondrodisplasias , Enfermedades de Inmunodeficiencia Primaria , Humanos , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Enfermedades de Inmunodeficiencia Primaria/inmunología , Osteocondrodisplasias/genética , Osteocondrodisplasias/inmunología , Reparación del ADN/genética , ADN Helicasas/genética , Síndrome Nefrótico/etiología , Síndrome Nefrótico/genética , Linfocitos T/inmunología , Arteriosclerosis/genética , Arteriosclerosis/etiología , Arteriosclerosis/inmunología , Masculino , Femenino , Embolia Pulmonar/genética , Embolia Pulmonar/etiología , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/genética , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/etiología , Rayos Ultravioleta/efectos adversos , Niño , Apoptosis/genética , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología
20.
J Transl Med ; 22(1): 762, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143486

RESUMEN

BACKGROUND: Personalized disease models are crucial for evaluating how diseased cells respond to treatments, especially in case of innovative biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells (nKPCs). METHODS: EVs were isolated from nKPCs derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport syndrome patient podocytes were characterized and used to assess albumin permeability in response to nKPC-EVs or various drugs. RNA sequencing was conducted to identify commonly modulated pathways after nKPC-EV treatment. siRNA transfection was used to demonstrate the involvement of SUMO1 and SENP2 in the modulation of permeability. RESULTS: Treatment with the nKPC-EVs significantly reduced permeability across all the steroid-resistant patients-derived and Alport syndrome-derived podocytes. At variance, podocytes appeared unresponsive to standard pharmacological treatments, with the exception of one line, in alignment with the patient's clinical response at 48 months. By RNA sequencing, only two genes were commonly upregulated in nKPC-EV-treated genetically altered podocytes: small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2). SUMO1 and SENP2 downregulation increased podocyte permeability confirming the role of the SUMOylation pathway. CONCLUSIONS: nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocytes with genetic dysfunction, through modulation of SUMOylation, an important pathway for the stability of podocyte slit diaphragm proteins. Our findings also suggest the feasibility of developing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.


Asunto(s)
Vesículas Extracelulares , Síndrome Nefrótico , Podocitos , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Podocitos/patología , Humanos , Síndrome Nefrótico/patología , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/metabolismo , Vesículas Extracelulares/metabolismo , Evaluación Preclínica de Medicamentos , Modelos Biológicos , Células Madre/metabolismo , Esteroides/farmacología , Riñón/patología , Riñón/metabolismo , Resistencia a Medicamentos , Recién Nacido , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA