Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.211
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34914922

RESUMEN

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Asunto(s)
COVID-19/patología , COVID-19/virología , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/virología , Macrófagos/patología , Macrófagos/virología , SARS-CoV-2/fisiología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , COVID-19/diagnóstico por imagen , Comunicación Celular , Estudios de Cohortes , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/genética , Células Madre Mesenquimatosas/patología , Fenotipo , Proteoma/metabolismo , Receptores de Superficie Celular/metabolismo , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Tomografía Computarizada por Rayos X , Transcripción Genética
2.
Proc Natl Acad Sci U S A ; 120(3): e2216458120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626557

RESUMEN

The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Ratones , Animales , Lipopolisacáridos/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/diagnóstico por imagen , Lesión Pulmonar Aguda/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Quimiocinas/metabolismo , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Imagen Molecular , Receptores de Quimiocina
3.
Am J Respir Crit Care Med ; 209(6): 670-682, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38127779

RESUMEN

Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.


Asunto(s)
Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Impedancia Eléctrica , Tomografía Computarizada por Rayos X/métodos , Pulmón , Insuficiencia Respiratoria/diagnóstico por imagen , Insuficiencia Respiratoria/terapia , Tomografía/métodos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia
4.
Crit Care Med ; 52(2): e100-e104, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962157

RESUMEN

OBJECTIVES: To assess the effect of incorporating bilateral abnormalities as detected by lung ultrasound (LUS) in the Kigali modification and the New Global definition of acute respiratory distress syndrome (ARDS) on the occurrence rate of ARDS. DESIGN: Post hoc analysis of a previously published prospective cohort study. SETTING: An academic mixed medical-surgical ICU. PATIENTS: The original study included critically ill adults with any opacity on chest radiography in whom subsequent LUS was performed. Patients with ARDS according to the Berlin definition, COVID-19 patients and patients with major thorax trauma were excluded. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: LUS was performed within 24 hours of chest radiography and the presence of unilateral and bilateral abnormalities on LUS and chest radiograph (opacities) was scored. Subsequently, the Kigali modification and the New Global definition of ARDS were applied by two independent researchers on the patients with newly found bilateral opacities. Of 120 patients, 116 were included in this post hoc analysis. Thirty-three patients had bilateral opacities on LUS and unilateral opacities on chest radiograph. Fourteen of these patients had ARDS according to the Kigali modification and 12 had ARDS according to the New Global definition. The detected LUS patterns were significantly different between patients with and without ARDS ( p = 0.004). An A-profile with a positive PosteroLateral Alveolar and/or Pleural Syndrome was most prevalent in patients without ARDS, whereas heterogeneous and mixed A, B, and C patterns were most prevalent in patients with ARDS. CONCLUSION: The addition of bilateral abnormalities as detected by LUS to the Kigali modification and the New Global definition increases the occurrence rate of the ARDS. The nomenclature for LUS needs to be better defined as LUS patterns differ between patients with and without ARDS. Incorporating well-defined LUS criteria can increase specificity and sensitivity of new ARDS definitions.


Asunto(s)
Pulmón , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Estudios Prospectivos , Rwanda , Pulmón/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/epidemiología , Tórax , Ultrasonografía
5.
Respir Res ; 25(1): 12, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178128

RESUMEN

BACKGROUND: There are relatively few data about the ultrasound evaluation of pleural line in patients with respiratory failure. We measured the pleural line thickness during different phases of the respiratory cycle in neonates with and without acute respiratory failure as we hypothesized that this can significantly change. METHODS: Prospective, observational, cohort study performed in an academic tertiary neonatal intensive care unit recruiting neonates with transient tachypnoea of the neonate (TTN), respiratory distress syndrome (RDS) or neonatal acute respiratory distress syndrome (NARDS). Neonates with no lung disease (NLD) were also recruited as controls. Pleural line thickness was measured with high-frequency ultrasound at end-inspiration and end-expiration by two different raters. RESULTS: Pleural line thickness was slightly but significantly higher at end-expiration (0.53 [0.43-0.63] mm) than at end-inspiration (0.5 [0.4-0.6] mm; p = 0.001) for the whole population. End-inspiratory (NLD: 0.45 [0.38-0.53], TTN: 0.49 [0.43-0.59], RDS: 0.53 [0.41-0.62], NARDS: 0.6 [0.5-0.7] mm) and -expiratory (NLD: 0.47 [0.42-0.56], TTN: 0.48 [0.43-0.61], RDS: 0.53 [0.46-0.65], NARDS: 0.61 [0.54-0.72] mm) thickness were significantly different (overall p = 0.021 for both), between the groups although the absolute differences were small. The inter-rater agreement was optimal (ICC: 0.95 (0.94-0.96)). Coefficient of variation was 2.8% and 2.5% for end-inspiratory and end-expiratory measurements, respectively. These findings provide normative data of pleural line thickness for the most common forms of neonatal acute respiratory failure and are useful to design future studies to investigate possible clinical applications.


Asunto(s)
Síndrome de Dificultad Respiratoria del Recién Nacido , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Recién Nacido , Estudios de Cohortes , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria del Recién Nacido/diagnóstico por imagen , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia , Insuficiencia Respiratoria/diagnóstico por imagen
6.
Nitric Oxide ; 147: 6-12, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588918

RESUMEN

Acute respiratory distress syndrome (ARDS) is characterized by a redistribution of regional lung perfusion that impairs gas exchange. While speculative, experimental evidence suggests that perfusion redistribution may contribute to regional inflammation and modify disease progression. Unfortunately, tools to visualize and quantify lung perfusion in patients with ARDS are lacking. This review explores recent advances in perfusion imaging techniques that aim to understand the pulmonary circulation in ARDS. Dynamic contrast-enhanced computed tomography captures first-pass kinetics of intravenously injected dye during continuous scan acquisitions. Different contrast characteristics and kinetic modeling have improved its topographic measurement of pulmonary perfusion with high spatial and temporal resolution. Dual-energy computed tomography can map the pulmonary blood volume of the whole lung with limited radiation exposure, enabling its application in clinical research. Electrical impedance tomography can obtain serial topographic assessments of perfusion at the bedside in response to treatments such as inhaled nitric oxide and prone position. Ongoing technological improvements and emerging techniques will enhance lung perfusion imaging and aid its incorporation into the care of patients with ARDS.


Asunto(s)
Pulmón , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/irrigación sanguínea , Tomografía Computarizada por Rayos X , Circulación Pulmonar , Imagen de Perfusión/métodos , Animales
7.
Anesthesiology ; 140(3): 495-512, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38088786

RESUMEN

BACKGROUND: Prone position is a key component to treat hypoxemia in patients with severe acute respiratory distress syndrome. However, most studies evaluating it exclude patients with brain injuries without any medical evidence. METHODS: This study includes a systematic review to determine whether brain-injured patients were excluded in studies evaluating prone position on acute respiratory distress syndrome; a prospective study including consecutive brain-injured patients needing prone position. The primary endpoint was the evaluation of cerebral blood flow using transcranial Doppler after prone positioning. Secondary outcomes were intracranial pressure, cerebral perfusion pressure, and tissue oxygen pressure. RESULTS: From 8,183 citations retrieved, 120 studies were included in the systematic review. Among them, 90 studies excluded brain-injured patients (75%) without any justification, 16 included brain-injured patients (4 randomized, 7 nonrandomized studies, 5 retrospective), and 14 did not retrieve brain-injured data. Eleven patients were included in the authors' pilot study. No reduction of cerebral blood flow surrogates was observed during prone positioning, with diastolic speed values (mean ± SD) ranging from 37.7 ± 16.2 cm/s to 45.2 ± 19.3 cm/s for the right side (P = 0.897) and 39.6 ± 18.2 cm/s to 46.5 ± 21.3 cm/s for the left side (P = 0.569), and pulsatility index ranging from 1.14 ± 0.31 to 1.0 ± 0.32 for the right side (P = 0.145) and 1.14 ± 0.31 to 1.02 ± 0.2 for the left side (P = 0.564) before and during prone position. CONCLUSIONS: Brain-injured patients are largely excluded from studies evaluating prone position in acute respiratory distress syndrome. However, cerebral blood flow seems not to be altered considering increasing of mean arterial pressure during the session. Systematic exclusion of brain-injured patients appears to be unfounded, and prone position, while at risk in brain-injured patients, should be evaluated on these patients to review recommendations, considering close monitoring of neurologic and hemodynamic parameters.


Asunto(s)
Síndrome de Dificultad Respiratoria , Humanos , Posición Prona , Proyectos Piloto , Estudios Prospectivos , Estudios Retrospectivos , Estudios de Factibilidad , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Encéfalo/diagnóstico por imagen , Respiración Artificial
8.
Anesthesiology ; 140(2): 251-260, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656772

RESUMEN

BACKGROUND: Despite the fervent scientific effort, a state-of-the art assessment of the different causes of hypoxemia (shunt, ventilation-perfusion mismatch, and diffusion limitation) in COVID-19 acute respiratory distress syndrome (ARDS) is currently lacking. In this study, the authors hypothesized a multifactorial genesis of hypoxemia and aimed to measure the relative contribution of each of the different mechanism and their relationship with the distribution of tissue and blood within the lung. METHODS: In this cross-sectional study, the authors prospectively enrolled 10 patients with COVID-19 ARDS who had been intubated for less than 7 days. The multiple inert gas elimination technique (MIGET) and a dual-energy computed tomography (DECT) were performed and quantitatively analyzed for both tissue and blood volume. Variables related to the respiratory mechanics and invasive hemodynamics (PiCCO [Getinge, Sweden]) were also recorded. RESULTS: The sample (51 ± 15 yr; Pao2/Fio2, 172 ± 86 mmHg) had a mortality of 50%. The MIGET showed a shunt of 25 ± 16% and a dead space of 53 ± 11%. Ventilation and perfusion were mismatched (LogSD, Q, 0.86 ± 0.33). Unexpectedly, evidence of diffusion limitation or postpulmonary shunting was also found. In the well aerated regions, the blood volume was in excess compared to the tissue, while the opposite happened in the atelectasis. Shunt was proportional to the blood volume of the atelectasis (R2 = 0.70, P = 0.003). V˙A/Q˙T mismatch was correlated with the blood volume of the poorly aerated tissue (R2 = 0.54, P = 0.016). The overperfusion coefficient was related to Pao2/Fio2 (R2 = 0.66, P = 0.002), excess tissue mass (R2 = 0.84, P < 0.001), and Etco2/Paco2 (R2 = 0.63, P = 0.004). CONCLUSIONS: These data support the hypothesis of a highly multifactorial genesis of hypoxemia. Moreover, recent evidence from post-mortem studies (i.e., opening of intrapulmonary bronchopulmonary anastomosis) may explain the findings regarding the postpulmonary shunting. The hyperperfusion might be related to the disease severity.


Asunto(s)
COVID-19 , Atelectasia Pulmonar , Síndrome de Dificultad Respiratoria , Humanos , Relación Ventilacion-Perfusión , Estudios Transversales , COVID-19/complicaciones , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Hipoxia/diagnóstico por imagen , Hipoxia/etiología , Tomografía , Intercambio Gaseoso Pulmonar
9.
Curr Opin Crit Care ; 30(1): 53-60, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085883

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to summarize the role of lung ultrasound and diaphragm ultrasound in guiding ventilator settings with an emphasis on positive end-expiratory pressure (PEEP). Recent advances for using ultrasound to assess the effects of PEEP on the lungs and diaphragm are discussed. RECENT FINDINGS: Lung ultrasound can accurately diagnose the cause of acute respiratory failure, including acute respiratory distress syndrome and can identify focal and nonfocal lung morphology in these patients. This is essential in determining optimal ventilator strategy and PEEP level. Assessment of the effect of PEEP on lung recruitment using lung ultrasound is promising, especially in the perioperative setting. Diaphragm ultrasound can monitor the effects of PEEP on the diaphragm, but this needs further validation. In patients with an acute exacerbation of chronic obstructive pulmonary disease, diaphragm ultrasound can be used to predict noninvasive ventilation failure. Lung and diaphragm ultrasound can be used to predict weaning outcome and accurately diagnose the cause of weaning failure. SUMMARY: Lung and diaphragm ultrasound are useful for diagnosing the cause of respiratory failure and subsequently setting the ventilator including PEEP. Effects of PEEP on lung and diaphragm can be monitored using ultrasound.


Asunto(s)
Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Diafragma/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Respiración con Presión Positiva , Insuficiencia Respiratoria/diagnóstico por imagen , Insuficiencia Respiratoria/terapia , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia
10.
Am J Respir Crit Care Med ; 207(12): 1591-1601, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790377

RESUMEN

Rationale: Lung ultrasound (LUS) is a promising tool for diagnosis of acute respiratory distress syndrome (ARDS), but adequately sized studies with external validation are lacking. Objectives: To develop and validate a data-driven LUS score for diagnosis of ARDS and compare its performance with that of chest radiography (CXR). Methods: This multicenter prospective observational study included invasively ventilated ICU patients who were divided into a derivation cohort and a validation cohort. Three raters scored ARDS according to the Berlin criteria, resulting in a classification of "certain no ARDS," or "certain ARDS" when experts agreed or "uncertain ARDS" when evaluations conflicted. Uncertain cases were classified in a consensus meeting. Results of a 12-region LUS exam were used in a logistic regression model to develop the LUS-ARDS score. Measurements and Main Results: Three hundred twenty-four (16% certain ARDS) and 129 (34% certain ARDS) patients were included in the derivation cohort and the validation cohort, respectively. With an ARDS diagnosis by the expert panel as the reference test, the LUS-ARDS score, including the left and right LUS aeration scores and anterolateral pleural line abnormalities, had an area under the receiver operating characteristic (ROC) curve of 0.90 (95% confidence interval [CI], 0.85-0.95) in certain patients of the derivation cohort and 0.80 (95% CI, 0.72-0.87) in all patients of the validation cohort. Within patients who had imaging-gold standard chest computed tomography available, diagnostic accuracy of eight independent CXR readers followed the ROC curve of the LUS-ARDS score. Conclusions: The LUS-ARDS score can be used to accurately diagnose ARDS also after external validation. The LUS-ARDS score may be a useful adjunct to a diagnosis of ARDS after further validation, as it showed performance comparable with that of the current practice with experienced CXR readers but more objectifiable diagnostic accuracy at each cutoff.


Asunto(s)
Pulmón , Síndrome de Dificultad Respiratoria , Humanos , Pulmón/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Ultrasonografía , Tórax , Radiografía
11.
Am J Respir Crit Care Med ; 208(1): 25-38, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37097986

RESUMEN

Rationale: Defining lung recruitability is needed for safe positive end-expiratory pressure (PEEP) selection in mechanically ventilated patients. However, there is no simple bedside method including both assessment of recruitability and risks of overdistension as well as personalized PEEP titration. Objectives: To describe the range of recruitability using electrical impedance tomography (EIT), effects of PEEP on recruitability, respiratory mechanics and gas exchange, and a method to select optimal EIT-based PEEP. Methods: This is the analysis of patients with coronavirus disease (COVID-19) from an ongoing multicenter prospective physiological study including patients with moderate-severe acute respiratory distress syndrome of different causes. EIT, ventilator data, hemodynamics, and arterial blood gases were obtained during PEEP titration maneuvers. EIT-based optimal PEEP was defined as the crossing point of the overdistension and collapse curves during a decremental PEEP trial. Recruitability was defined as the amount of modifiable collapse when increasing PEEP from 6 to 24 cm H2O (ΔCollapse24-6). Patients were classified as low, medium, or high recruiters on the basis of tertiles of ΔCollapse24-6. Measurements and Main Results: In 108 patients with COVID-19, recruitability varied from 0.3% to 66.9% and was unrelated to acute respiratory distress syndrome severity. Median EIT-based PEEP differed between groups: 10 versus 13.5 versus 15.5 cm H2O for low versus medium versus high recruitability (P < 0.05). This approach assigned a different PEEP level from the highest compliance approach in 81% of patients. The protocol was well tolerated; in four patients, the PEEP level did not reach 24 cm H2O because of hemodynamic instability. Conclusions: Recruitability varies widely among patients with COVID-19. EIT allows personalizing PEEP setting as a compromise between recruitability and overdistension. Clinical trial registered with www.clinicaltrials.gov (NCT04460859).


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Impedancia Eléctrica , Estudios Prospectivos , Pulmón/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Tomografía Computarizada por Rayos X/métodos , Tomografía/métodos
12.
BMC Pulm Med ; 24(1): 62, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287299

RESUMEN

BACKGROUND: Lung ultrasound (LUS) score could quantitatively reflect the lung aeration, which has been well applied in critically ill patients. The aim of the systematic review and meta-analysis was to evaluate the association between LUS score at admission and the risk of in-hospital mortality of adults with acute respiratory distress syndrome (ARDS). METHODS: Toachieve the objective of this meta-analysis, we conducted a thorough search of PubMed, Embase, Cochrane Library, and the Web of Science to identify relevant observational studies with longitudinal follow-up. We employed random-effects models to combine the outcomes, considering the potential influence of heterogeneity. RESULTS: Thirteen cohort studies with 1,022 hospitalized patients with ARDS were included. Among them, 343 patients (33.6%) died during hospitalization. The pooled results suggested that the LUS score at admission was higher in non-survivors as compared to survivors (standardized mean difference = 0.73, 95% confidence interval [CI]: 0.55 to 0.91, p < 0.001; I2 = 25%). Moreover, a high LUS score at admission was associated with a higher risk of in-hospital mortality of patients with ARDS (risk ratio: 1.44, 95% CI: 1.14 to 1.81, p = 0.002; I2 = 46%). Subgroup analyses showed consistent results in studies with LUS score analyzed with 12 or 16 lung regions, and in studies reporting mortality during ICU or within 1-month hospitalization. CONCLUSION: Our findings suggest that a high LUS score at admission may be associated with a high risk of in-hospital mortality of patients with ARDS.


Asunto(s)
Pulmón , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Mortalidad Hospitalaria , Pronóstico , Pulmón/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Estudios de Cohortes , Ultrasonografía/métodos , Estudios Observacionales como Asunto
13.
BMC Pulm Med ; 24(1): 298, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918752

RESUMEN

BACKGROUND: End-expiratory lung volume (EELV) has been observed to decrease in acute respiratory distress syndrome (ARDS). Yet, research investigating EELV in patients with COVID-19 associated ARDS (CARDS) remains limited. It is unclear whether EELV could serve as a potential metric for monitoring disease progression and identifying patients with ARDS at increased risk of adverse outcomes. STUDY DESIGN AND METHODS: This retrospective study included mechanically ventilated patients diagnosed with CARDS during the initial phase of epidemic control in Shanghai. EELV was measured using the nitrogen washout-washin technique within 48 h post-intubation, followed by regular assessments every 3-4 days. Chest CT scans, performed within a 24-hour window around each EELV measurement, were analyzed using AI software. Differences in patient demographics, clinical data, respiratory mechanics, EELV, and chest CT findings were assessed using linear mixed models (LMM). RESULTS: Out of the 38 patients enrolled, 26.3% survived until discharge from the ICU. In the survivor group, EELV, EELV/predicted body weight (EELV/PBW) and EELV/predicted functional residual capacity (EELV/preFRC) were significantly higher than those in the non-survivor group (survivor group vs. non-survivor group: EELV: 1455 vs. 1162 ml, P = 0.049; EELV/PBW: 24.1 vs. 18.5 ml/kg, P = 0.011; EELV/preFRC: 0.45 vs. 0.34, P = 0.005). Follow-up assessments showed a sustained elevation of EELV/PBW and EELV/preFRC among the survivors. Additionally, EELV exhibited a positive correlation with total lung volume and residual lung volume, while demonstrating a negative correlation with lesion volume determined through chest CT scans analyzed using AI software. CONCLUSION: EELV is a useful indicator for assessing disease severity and monitoring the prognosis of patients with CARDS.


Asunto(s)
COVID-19 , Mediciones del Volumen Pulmonar , Síndrome de Dificultad Respiratoria , Tomografía Computarizada por Rayos X , Humanos , COVID-19/complicaciones , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , China , Anciano , Mediciones del Volumen Pulmonar/métodos , SARS-CoV-2 , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Respiración Artificial , Adulto
14.
J Cardiothorac Vasc Anesth ; 38(4): 881-883, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378321

RESUMEN

Air leak syndromes (such as pneumomediastinum, pneumothorax, or subcutaneous emphysema) are frequent complications of acute respiratory distress syndrome (ARDS). Unfortunately, the development of air leaks is associated with worse outcomes. In addition, it has been hypothesized that the development of pneumomediastinum could be a marker of disease severity in patients with respiratory failure receiving noninvasive respiratory support or assisted ventilation. The so-called Macklin effect (or pulmonary interstitial emphysema) is the air dissection of the lung bronchovascular tree from peripheral to central airways following injury to distal alveoli. Ultimately, the progression of the Macklin effect leads to the development of pneumomediastinum, subcutaneous emphysema, or pneumothorax. The Macklin effect is identifiable on a chest computed tomography (CT) scan. The Macklin effect could be an accurate predictor of barotrauma in patients with ARDS (sensitivity = 89.2% [95% CI: 74.6-96.9]; specificity = 95.6% [95% CI: 90.6-98.4]), and may be a marker of disease severity. Accordingly, the detection of the Macklin effect on a chest CT scan could be used to select which patients with ARDS might benefit from different treatment algorithms, including advanced respiratory monitoring, early intubation, or, potentially, the institution of early extracorporeal support with or without invasive ventilation. In this video, the authors summarize the pathophysiology and potential clinical significance and applications of the Macklin effect in patients with acute respiratory failure.


Asunto(s)
Enfisema Mediastínico , Neumotórax , Síndrome de Dificultad Respiratoria , Enfisema Subcutáneo , Humanos , Neumotórax/diagnóstico por imagen , Neumotórax/etiología , Enfisema Mediastínico/complicaciones , Pulmón , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/complicaciones , Enfisema Subcutáneo/complicaciones
15.
J Ultrasound Med ; 43(7): 1235-1243, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38482881

RESUMEN

OBJECTIVES: Acute respiratory distress syndrome (ARDS) is a respiratory disease characterized by a high rate of mortality. Determining the prognosis of this disease is therefore important. Lung ultrasonography has found increased use, especially in the recent years. This study aimed to score patients diagnosed with ARDS at the emergency department using point-of-care ultrasound (POCUS)-Lung and to investigate the prognosis of patients with ARDS using a scoring system. METHODS: This study was designed as a single-center prospective study. The study was performed in patients admitted to the emergency department and were diagnosed with ARDS pursuant to the Berlin criteria for ARDS and who met the inclusion criteria. The patients underwent lung ultrasonography at the emergency department and were scored (A line: 0; B1 line: 1; B2 line: 2; and C line: 3 points) accordingly. RESULTS: The study included 100 patients with ARDS. The mortality rate was 52% in the patients in the study. The lung ultrasonography score in the mortality group (25.48 ± 3.64) was higher than that in the survivors (8.46 ± 3.61). For a cut-off value of 17.5 for the lung ultrasonography score, the sensitivity and specificity with regard to mortality indicators were 92.8% and 90.9%, respectively (the area under the curve: 0.901; 95% confidence interval: 0.945-0.985: P < .001). CONCLUSION: The findings suggested that scoring based on POCUS-Lung at the time of initial presentation at the emergency department in patients diagnosed with ARDS according to the Berlin criteria could help determine the prognosis. As POCUS-Lung proved to be an important imaging method in investigating the affected alveolar capacity, we recommend its possible use as a prognostic indicator.


Asunto(s)
Servicio de Urgencia en Hospital , Pulmón , Síndrome de Dificultad Respiratoria , Sensibilidad y Especificidad , Ultrasonografía , Humanos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Masculino , Femenino , Pronóstico , Ultrasonografía/métodos , Estudios Prospectivos , Pulmón/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Adulto , Sistemas de Atención de Punto , Índice de Severidad de la Enfermedad
16.
Neurocrit Care ; 40(1): 187-195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37667080

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is an acute inflammatory respiratory failure condition that may be associated with brain injury. We aimed to describe the types of structural brain injuries detected by brain magnetic resonance imaging (MRI) among patients with ARDS. METHODS: We retrospectively reviewed and collected data on brain injuries as detected by brain MRI during index hospitalization of all patients with ARDS at a single tertiary center in the United States from January 2010 to October 2018 (pre-COVID era). Structural brain injuries were classified as cerebral ischemia (ischemic infarct and hypoxic-ischemic brain injury) or cerebral hemorrhage (intraparenchymal hemorrhage, cerebral microbleeds, subarachnoid hemorrhage, and subdural hematoma). Descriptive statistics were conducted. RESULTS: Of the 678 patients with ARDS, 66 (9.7%) underwent brain MRI during their ARDS illness. The most common indication for brain MRI was encephalopathy (45.4%), and the median time from hospital admission to MRI was 10 days (interquartile range 4-17). Of 66 patients, 29 (44%) had MRI evidence of brain injury, including cerebral ischemia in 33% (22 of 66) and cerebral hemorrhage in 21% (14 of 66). Among those with cerebral ischemia, common findings were bilateral globus pallidus infarcts (n = 7, 32%), multifocal infarcts (n = 5, 23%), and diffuse hypoxic-ischemic brain injury (n = 3, 14%). Of those with cerebral hemorrhage, common findings were cerebral microbleeds (n = 12, 86%) and intraparenchymal hemorrhage (n = 2, 14%). Patients with ARDS with cerebral hemorrhage had significantly greater use of rescue therapies, including prone positioning (28.6% vs. 5.8%, p = 0.03), inhaled vasodilator (35.7% vs. 11.5%, p = 0.046), and recruitment maneuver (14.3% vs. 0%, p = 0.04). CONCLUSIONS: Structural brain injury was not uncommon among selected patients with ARDS who underwent brain MRI. The majority of brain injuries seen were bilateral globus pallidus infarcts and cerebral microbleeds.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Síndrome de Dificultad Respiratoria , Humanos , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Infarto Cerebral/patología , Hemorragia Cerebral/patología , Síndrome de Dificultad Respiratoria/diagnóstico por imagen
17.
Zhonghua Yi Xue Za Zhi ; 104(15): 1225-1229, 2024 Apr 16.
Artículo en Zh | MEDLINE | ID: mdl-38637160

RESUMEN

Acute respiratory distress syndrome (ARDS) continues to cause significant morbidity and mortality worldwide. However, there are currently no corresponding specific medications. Lung, right heart, and diaphragm protective therapy is the cornerstone of ARDS management. Non-invasive, radiation-free, and transportation-free point-of-care ultrasound enables for real-time dynamic evaluation of the lung, right heart, and diaphragm. It is an essential tool for the diagnosis, monitoring, and clinical decision-making of ARDS patients. However, ultrasound has several limitations, and its clinical application must be carefully evaluated in conjunction with clinical symptoms and other monitoring techniques. Further research is needed to determine whether clinical decision-making based on point-of-care ultrasound examination can improve the prognosis of ARDS patients.


Asunto(s)
Sistemas de Atención de Punto , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Pulmón/diagnóstico por imagen , Ultrasonografía/métodos , Pronóstico
18.
Rev Med Liege ; 79(3): 152-160, 2024 Mar.
Artículo en Francés | MEDLINE | ID: mdl-38487909

RESUMEN

INTRODUCTION: The seasonal flu is a very important reason for consultation every winter. Symptoms can quickly progress to severe pneumonia. Currently, few tools exist to assess the clinical severity of patients. The aim of this study is to demonstrate the role of lung ultrasound as a marker of severity in patients with influenza. METHODS: 79 patients who arrived at the emergency department with flu-like symptoms were included. A pulmonary ultrasound looking for an interstitial syndrome or consolidation was performed. The qSOFA, the SOFA, the saturation, the PaO2/FiO2 ratio, the oxygen needs, the destination of the patient made it possible to establish the seriousness of the pathology of the patient. Ultrasound was then compared to these different tools. RESULTS: The more the ultrasound became pathological, the more we observed a proportion of qSOFA (p = 0.001) and pathological SOFA (p = 0.009). Most patients with acute respiratory distress syndrome have pathological ultrasound (p < 0.001). The average admission saturation is 89.2 % in the "pathological ultrasound" group compared to 95.8 % in the "normal ultrasound" group (p < 0.001). Patients who required invasive therapies had pathological ultrasound (p < 0.001). Of the 28 patients with pathological ultrasound, 24 required hospitalization (p < 0.001). CONCLUSION: Lung ultrasound is a major asset for assessing the severity of the patient with seasonal flu. In addition, ultrasound allows better monitoring of the patient by being able to influence the destination of the latter towards a return home or monitoring in intensive care.


INTRODUCTION: La grippe saisonnière représente chaque hiver un motif de consultation très important. La symptomatologie peut rapidement évoluer vers une pneumonie sévère. Actuellement, peu d'outils existent pour évaluer la sévérité clinique des patients. Le but de cette étude est de démontrer le rôle de l'échographie pulmonaire comme marqueur de sévérité́ chez les patients atteints d'une grippe. Méthodes : L'étude a comporté 79 patients arrivés aux urgences pour grippe. Une échographie pulmonaire a été réalisée à la recherche d'un syndrome interstitiel ou d'une consolidation. Le qSOFA, le SOFA, la saturation, le rapport PaO2/FiO2, les besoins en oxygène, la destination du patient ont permis d'établir la gravité de la pathologie du patient. L'échographie a alors été comparée à ces différents outils. Résultats : Plus l'échographie devient pathologique, plus on observe une proportion de qSOFA (p = 0,001) et de SOFA pathologiques (p = 0,009). La majorité́ des patients ayant un syndrome de détresse respiratoire aiguë ont une échographie pathologique (p < 0,001). La moyenne des saturations d'admission est de 89,2 % dans le groupe «échographie pathologique¼ contre 95,8 % dans le groupe «échographie normale¼ (p < 0,001). Les patients ayant eu recours à des thérapies invasives ont une échographie pathologique (p < 0,001). Sur les 28 patients ayant une échographie pathologique, 24 ont nécessité́ une hospitalisation (p < 0,001). CONCLUSION: L'échographie pulmonaire est un atout majeur pour l'évaluation de la sévérité du patient atteint d'une grippe saisonnière. De plus, l'échographie permet une meilleure surveillance du patient en pouvant influencer la destination de celui-ci vers un retour à̀ domicile ou une surveillance aux soins intensifs.


Asunto(s)
Gripe Humana , Neumonía , Síndrome de Dificultad Respiratoria , Humanos , Gripe Humana/diagnóstico por imagen , Estaciones del Año , Pulmón/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/diagnóstico por imagen
19.
Crit Care Med ; 51(11): e209-e220, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37294143

RESUMEN

OBJECTIVES: Pulmonary fibrosis is a feared complication of COVID-19. To characterize the risks and outcomes associated with fibrotic-like radiographic abnormalities in patients with COVID-19-related acute respiratory distress syndrome (ARDS) and chronic critical illness. DESIGN: Single-center prospective cohort study. SETTING: We examined chest CT scans performed between ICU discharge and 30 days after hospital discharge using established methods to quantify nonfibrotic and fibrotic-like patterns. PATIENTS: Adults hospitalized with COVID-19-related ARDS and chronic critical illness (> 21 d of mechanical ventilation, tracheostomy, and survival to ICU discharge) between March 2020 and May 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We tested associations of fibrotic-like patterns with clinical characteristics and biomarkers, and with time to mechanical ventilator liberation and 6-month survival, controlling for demographics, comorbidities, and COVID-19 therapies. A total of 141 of 616 adults (23%) with COVID-19-related ARDS developed chronic critical illness, and 64 of 141 (46%) had a chest CT a median (interquartile range) 66 days (42-82 d) after intubation. Fifty-five percent had fibrotic-like patterns characterized by reticulations and/or traction bronchiectasis. In adjusted analyses, interleukin-6 level on the day of intubation was associated with fibrotic-like patterns (odds ratio, 4.40 per quartile change; 95% CI, 1.90-10.1 per quartile change). Other inflammatory biomarkers, Sequential Organ Failure Assessment score, age, tidal volume, driving pressure, and ventilator days were not. Fibrotic-like patterns were not associated with longer time to mechanical ventilator liberation or worse 6-month survival. CONCLUSIONS: Approximately half of adults with COVID-19-associated chronic critical illness have fibrotic-like patterns that are associated with higher interleukin-6 levels at intubation. Fibrotic-like patterns are not associated with longer time to liberation from mechanical ventilation or worse 6-month survival.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Adulto , Humanos , COVID-19/diagnóstico por imagen , COVID-19/complicaciones , Enfermedad Crítica/terapia , Estudios Prospectivos , Interleucina-6 , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , Respiración Artificial/efectos adversos , Biomarcadores
20.
Respir Res ; 24(1): 128, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165334

RESUMEN

BACKGROUND: It is clinically important to predict difficulty in short-term liberation from veno-venous extracorporeal membrane oxygenation (V-V ECMO) in patients with severe acute respiratory distress syndrome (ARDS) at the time of initiation of the support. The aim of this study was to identify the characteristics of pulmonary opacities on chest CT that is associated with difficulty in short-term liberation from V-V ECMO (< 14 days). METHODS: This multicenter retrospective study was conducted in adult patients initiated on V-V ECMO for severe ARDS between January 2014 and June 2022. The pulmonary opacities on CT at the time of initiation of the ECMO support were evaluated in a blinded manner, focusing on the following three characteristics of the opacities: (1) their distribution (focal/diffuse on the dorso-ventral axis or unilateral/bilateral on the left-right axis); (2) their intensity (pure ground glass/pure consolidation/mixed pattern); and (3) the degree of fibroproliferation (signs of traction bronchiectasis or reticular opacities). RESULTS: Among the 153 patients, 72 (47%) were successfully liberated from ECMO in the short term, while short-term liberation failed in the remaining 81 (53%) patients. Multivariate logistic regression analysis showed that the presence of mixed-pattern pulmonary opacities and signs of traction bronchiectasis, but not the distribution of the opacities, were independently associated with difficulty in short-term liberation (OR [95% CI]; 4.8 [1.4-16.5] and 3.9 [1.4-11.2], respectively). CONCLUSIONS: The presence of a mixed pattern of the pulmonary opacities and signs of traction bronchiectasis on the chest CT were independently associated with difficulty in short-term liberation from V-V ECMO in severe ARDS patients.


Asunto(s)
Bronquiectasia , Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Estudios Retrospectivos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA