Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.608
Filtrar
Más filtros

Colección BVS Ecuador
Intervalo de año de publicación
1.
Cell ; 178(6): 1277-1279, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474369

RESUMEN

The oncogenic gammaherpesvirus Kaposi sarcoma-associated herpesvirus (KSHV) is globally widespread; infection rates are as high as 80% in parts of sub-Saharan Africa. In this issue of Cell, Gong et al. (2019) describe the high-resolution structure of a critical component of the KSHV virion-the portal vertex.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Cápside , Proteínas de la Cápside , ADN , Humanos
2.
Cell ; 178(6): 1329-1343.e12, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447177

RESUMEN

Assembly of Kaposi's sarcoma-associated herpesvirus (KSHV) begins at a bacteriophage-like portal complex that nucleates formation of an icosahedral capsid with capsid-associated tegument complexes (CATCs) and facilitates translocation of an ∼150-kb dsDNA genome, followed by acquisition of a pleomorphic tegument and envelope. Because of deviation from icosahedral symmetry, KSHV portal and tegument structures have largely been obscured in previous studies. Using symmetry-relaxed cryo-EM, we determined the in situ structure of the KSHV portal and its interactions with surrounding capsid proteins, CATCs, and the terminal end of KSHV's dsDNA genome. Our atomic models of the portal and capsid/CATC, together with visualization of CATCs' variable occupancy and alternate orientation of CATC-interacting vertex triplexes, suggest a mechanism whereby the portal orchestrates procapsid formation and asymmetric long-range determination of CATC attachment during DNA packaging prior to pleomorphic tegumentation/envelopment. Structure-based mutageneses confirm that a triplex deep binding groove for CATCs is a hotspot that holds promise for antiviral development.


Asunto(s)
Proteínas de la Cápside/química , Cápside/metabolismo , Empaquetamiento del ADN , Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiología , Sarcoma de Kaposi/virología , Ensamble de Virus , Microscopía por Crioelectrón/métodos , ADN Viral/metabolismo , Genoma Viral , Humanos , Modelos Moleculares
3.
Nat Methods ; 21(3): 488-500, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361019

RESUMEN

Protein-protein interactions (PPIs) drive cellular processes and responses to environmental cues, reflecting the cellular state. Here we develop Tapioca, an ensemble machine learning framework for studying global PPIs in dynamic contexts. Tapioca predicts de novo interactions by integrating mass spectrometry interactome data from thermal/ion denaturation or cofractionation workflows with protein properties and tissue-specific functional networks. Focusing on the thermal proximity coaggregation method, we improved the experimental workflow. Finely tuned thermal denaturation afforded increased throughput, while cell lysis optimization enhanced protein detection from different subcellular compartments. The Tapioca workflow was next leveraged to investigate viral infection dynamics. Temporal PPIs were characterized during the reactivation from latency of the oncogenic Kaposi's sarcoma-associated herpesvirus. Together with functional assays, NUCKS was identified as a proviral hub protein, and a broader role was uncovered by integrating PPI networks from alpha- and betaherpesvirus infections. Altogether, Tapioca provides a web-accessible platform for predicting PPIs in dynamic contexts.


Asunto(s)
Herpesvirus Humano 8 , Manihot , Sarcoma de Kaposi , Sarcoma de Kaposi/metabolismo , Proteínas Virales/metabolismo , Manihot/metabolismo , Latencia del Virus , Herpesvirus Humano 8/metabolismo
4.
PLoS Pathog ; 20(7): e1012338, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39008527

RESUMEN

Recently published near full-length KSHV genomes from a Cameroon Kaposi sarcoma case-control study showed strong evidence of viral recombination and mixed infections, but no sequence variations associated with disease. Using the same methodology, an additional 102 KSHV genomes from 76 individuals with KSHV-associated diseases have been sequenced. Diagnoses comprise all KSHV-associated diseases (KAD): Kaposi sarcoma (KS), primary effusion lymphoma (PEL), KSHV-associated large cell lymphoma (KSHV-LCL), a type of multicentric Castleman disease (KSHV-MCD), and KSHV inflammatory cytokine syndrome (KICS). Participants originated from 22 different countries, providing the opportunity to obtain new near full-length sequences of a wide diversity of KSHV genomes. These include near full-length sequence of genomes with KSHV K1 subtypes A, B, C, and F as well as subtype E, for which no full sequence was previously available. High levels of recombination were observed. Fourteen individuals (18%) showed evidence of infection with multiple KSHV variants (from two to four unique genomes). Twenty-six comparisons of sequences, obtained from various sampling sites including PBMC, tissue biopsies, oral fluids, and effusions in the same participants, identified near complete genome conservation between different biological compartments. Polymorphisms were identified in coding and non-coding regions, including indels in the K3 and K15 genes and sequence inversions here reported for the first time. One such polymorphism in KSHV ORF46, specific to the KSHV K1 subtype E2, encoded a mutation in the leucine loop extension of the uracil DNA glycosylase that results in alteration of biochemical functions of this protein. This confirms that KSHV sequence variations can have functional consequences warranting further investigation. This study represents the largest and most diverse analysis of KSHV genome sequences to date among individuals with KAD and provides important new information on global KSHV genomics.


Asunto(s)
Genoma Viral , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/genética , Masculino , Femenino , Persona de Mediana Edad , Adulto , Polimorfismo Genético , Anciano , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/virología , Etnicidad/genética , Enfermedad de Castleman/virología , Enfermedad de Castleman/genética , Filogenia
5.
PLoS Pathog ; 20(1): e1011907, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38232124

RESUMEN

Kaposi's sarcoma herpesvirus (KSHV) is a leading cause of malignancy in AIDS and current therapies are limited. Like all herpesviruses, KSHV infection can be latent or lytic. KSHV latency-associated nuclear antigen (LANA) is essential for viral genome persistence during latent infection. LANA also maintains latency by antagonizing expression and function of the KSHV lytic switch protein, RTA. Here, we find LANA null KSHV is not capable of lytic replication, indicating a requirement for LANA. While LANA promoted both lytic and latent gene expression in cells partially permissive for lytic infection, it repressed expression in non-permissive cells. Importantly, forced RTA expression in non-permissive cells led to induction of lytic infection and LANA switched to promote, rather than repress, most lytic viral gene expression. When basal viral gene expression levels were high, LANA promoted expression, but repressed expression at low basal levels unless RTA expression was forcibly induced. LANA's effects were broad, but virus gene specific, extending to an engineered, recombinant viral GFP under control of host EF1α promoter, but not to host EF1α. Together, these results demonstrate that, in addition to its essential role in genome maintenance, LANA broadly regulates viral gene expression, and is required for high levels of lytic gene expression during lytic infection. Strategies that target LANA are expected to abolish KSHV infection.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Nucleares , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Latencia del Virus/genética , Antígenos Virales/genética , Antígenos Virales/metabolismo , Expresión Génica , Regulación Viral de la Expresión Génica , Replicación Viral
6.
PLoS Pathog ; 20(1): e1011943, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38215174

RESUMEN

Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Sarcoma de Kaposi , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Transactivadores/genética , Herpesvirus Humano 8/genética , Replicación Viral , Regulación Viral de la Expresión Génica , Activación Viral , Proteasas Ubiquitina-Específicas/metabolismo
7.
PLoS Pathog ; 20(2): e1012023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38381773

RESUMEN

Protein-level immunodominance patterns against Kaposi sarcoma-associated herpesvirus (KSHV), the aetiologic agent of Kaposi sarcoma (KS), have been revealed from serological probing of whole protein arrays, however, the epitopes that underlie these patterns have not been defined. We recently demonstrated the utility of phage display in high-resolution linear epitope mapping of the KSHV latency-associated nuclear antigen (LANA/ORF73). Here, a VirScan phage immunoprecipitation and sequencing approach, employing a library of 1,988 KSHV proteome-derived peptides, was used to quantify the breadth and magnitude of responses of 59 sub-Saharan African KS patients and 22 KSHV-infected asymptomatic individuals (ASY), and ultimately to support an application of machine-learning-based predictive modeling using the peptide-level responses. Comparing anti-KSHV antibody repertoire revealed that magnitude, not breadth, increased in KS. The most targeted epitopes in both KS and ASY were in the immunodominant proteins, notably, K8.129-56 and ORF65140-168, in addition to LANA. Finally, using unbiased machine-learning-based predictive models, reactivity to a subset of 25 discriminative peptides was demonstrated to successfully classify KS patients from asymptomatic individuals. Our study provides the highest resolution mapping of antigenicity across the entire KSHV proteome to date, which is vital to discern mechanisms of viral pathogenesis, to define prognostic biomarkers, and to design effective vaccine and therapeutic strategies. Future studies will investigate the diagnostic, prognostic, and therapeutic potential of the 25 discriminative peptides.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/metabolismo , Proteoma/metabolismo , Antígenos Virales , Proteínas Nucleares/metabolismo , Infecciones por Herpesviridae/complicaciones , Péptidos/metabolismo , Epítopos/metabolismo
8.
PLoS Pathog ; 20(3): e1012082, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470932

RESUMEN

Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.


Asunto(s)
Ferroptosis , Herpesvirus Humano 8 , Neoplasias , Sarcoma de Kaposi , Sirtuina 3 , Ratas , Animales , Herpesvirus Humano 8/genética , Sirtuina 3/genética , Sirtuina 3/metabolismo , Transformación Celular Neoplásica , Proteínas Virales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
PLoS Pathog ; 20(1): e1011881, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190392

RESUMEN

In people living with HIV, Kaposi Sarcoma (KS), a vascular neoplasm caused by KS herpesvirus (KSHV/HHV-8), remains one of the most common malignancies worldwide. Individuals living with HIV, receiving otherwise effective antiretroviral therapy, may present with extensive disease requiring chemotherapy. Hence, new therapeutic approaches are needed. The Wilms' tumor 1 (WT1) protein is overexpressed and associated with poor prognosis in several hematologic and solid malignancies and has shown promise as an immunotherapeutic target. We found that WT1 was overexpressed in >90% of a total 333 KS biopsies, as determined by immunohistochemistry and image analysis. Our largest cohort from ACTG, consisting of 294 cases was further analyzed demonstrating higher WT1 expression was associated with more advanced histopathologic subtypes. There was a positive correlation between the proportion of infected cells within KS tissues, assessed by expression of the KSHV-encoded latency-associated nuclear antigen (LANA), and WT1 positivity. Areas with high WT1 expression showed sparse T-cell infiltrates, consistent with an immune evasive tumor microenvironment. We show that major oncogenic isoforms of WT1 are overexpressed in primary KS tissue and observed WT1 upregulation upon de novo infection of endothelial cells with KSHV. KSHV latent viral FLICE-inhibitory protein (vFLIP) upregulated total and major isoforms of WT1, but upregulation was not seen after expression of mutant vFLIP that is unable to bind IKKÆ´ and induce NFκB. siRNA targeting of WT1 in latent KSHV infection resulted in decreased total cell number and pAKT, BCL2 and LANA protein expression. Finally, we show that ESK-1, a T cell receptor-like monoclonal antibody that recognizes WT1 peptides presented on MHC HLA-A0201, demonstrates increased binding to endothelial cells after KSHV infection or induction of vFLIP expression. We propose that oncogenic isoforms of WT1 are upregulated by KSHV to promote tumorigenesis and immunotherapy directed against WT1 may be an approach for KS treatment.


Asunto(s)
Infecciones por VIH , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Células Endoteliales/metabolismo , Infecciones por VIH/metabolismo , Isoformas de Proteínas/metabolismo , Microambiente Tumoral
10.
Nucleic Acids Res ; 52(4): 1814-1829, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38180827

RESUMEN

To establish lifelong, latent infection, herpesviruses circularize their linear, double-stranded, DNA genomes through an unknown mechanism. Kaposi's sarcoma (KS) herpesvirus (KSHV), a gamma herpesvirus, is tightly linked with KS, primary effusion lymphoma, and multicentric Castleman's disease. KSHV persists in latently infected cells as a multi-copy, extrachromosomal episome. Here, we show the KSHV genome rapidly circularizes following infection, and viral protein expression is unnecessary for this process. The DNA damage response (DDR) kinases, ATM and DNA-PKcs, each exert roles, and absence of both severely compromises circularization and latency. These deficiencies were rescued by expression of ATM and DNA-PKcs, but not catalytically inactive mutants. In contrast, γH2AX did not function in KSHV circularization. The linear viral genomic ends resemble a DNA double strand break, and non-homologous DNA end joining (NHEJ) and homologous recombination (HR) reporters indicate both NHEJ and HR contribute to KSHV circularization. Last, we show, similar to KSHV, ATM and DNA-PKcs have roles in circularization of the alpha herpesvirus, herpes simplex virus-1 (HSV-1), while γH2AX does not. Therefore, the DDR mediates KSHV and HSV-1 circularization. This strategy may serve as a general herpesvirus mechanism to initiate latency, and its disruption may provide new opportunities for prevention of herpesvirus disease.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/genética , Latencia del Virus/genética , ADN , Reparación del ADN
11.
Nucleic Acids Res ; 52(13): 7720-7739, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38922687

RESUMEN

Kaposi's sarcoma-associated herpesvirus is the etiologic agent of Kaposi's sarcoma and two B-cell malignancies. Recent advancements in sequencing technologies have led to high resolution transcriptomes for several human herpesviruses that densely encode genes on both strands. However, for KSHV progress remained limited due to the overall low percentage of KSHV transcripts, even during lytic replication. To address this challenge, we have developed a target enrichment method to increase the KSHV-specific reads for both short- and long-read sequencing platforms. Furthermore, we combined this approach with the Transcriptome Resolution through Integration of Multi-platform Data (TRIMD) pipeline developed previously to annotate transcript structures. TRIMD first builds a scaffold based on long-read sequencing and validates each transcript feature with supporting evidence from Illumina RNA-Seq and deepCAGE sequencing data. Our stringent innovative approach identified 994 unique KSHV transcripts, thus providing the first high-density KSHV lytic transcriptome. We describe a plethora of novel coding and non-coding KSHV transcript isoforms with alternative untranslated regions, splice junctions and open-reading frames, thus providing deeper insights on gene expression regulation of KSHV. Interestingly, as described for Epstein-Barr virus, we identified transcription start sites that augment long-range transcription and may increase the number of latency-associated genes potentially expressed in KS tumors.


Asunto(s)
Empalme Alternativo , Herpesvirus Humano 8 , Transcriptoma , Herpesvirus Humano 8/genética , Humanos , Transcriptoma/genética , Transcripción Genética , Regulación Viral de la Expresión Génica , Sistemas de Lectura Abierta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/genética , ARN Viral/genética , ARN Viral/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(6): e2212864120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36724259

RESUMEN

Non-coding RNAs (ncRNAs) play important roles in host-pathogen interactions; oncogenic viruses like Kaposi's sarcoma herpesvirus (KSHV) employ ncRNAs to establish a latent reservoir and persist for the life of the host. We previously reported that KSHV infection alters a novel class of RNA, circular RNAs (circRNAs). CircRNAs are alternative splicing isoforms and regulate gene expression, but their importance in infection is largely unknown. Here, we showed that a human circRNA, hsa_circ_0001400, is induced by various pathogenic viruses, namely KSHV, Epstein-Barr virus, and human cytomegalovirus. The induction of circRNAs including circ_0001400 by KSHV is co-transcriptionally regulated, likely at splicing. Consistently, screening for circ_0001400-interacting proteins identified a splicing factor, PNISR. Functional studies using infected primary endothelial cells revealed that circ_0001400 inhibits KSHV lytic transcription and virus production. Simultaneously, the circRNA promoted cell cycle, inhibited apoptosis, and induced immune genes. RNA-pull down assays identified transcripts interacting with circ_0001400, including TTI1, which is a component of the pro-growth mTOR complexes. We thus identified a circRNA that is pro-growth and anti-lytic replication. These results support a model in which KSHV induces circ_0001400 expression to maintain latency. Since circ_0001400 is induced by multiple viruses, this novel viral strategy may be widely employed by other viruses.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 8 , Infección Latente , Virus ARN , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , ARN Circular/genética , Sarcoma de Kaposi/genética , Células Endoteliales , Latencia del Virus/genética , Herpesvirus Humano 4/genética , ARN Viral/genética , ARN no Traducido , Virus ARN/genética , Replicación Viral/genética , Regulación Viral de la Expresión Génica
13.
J Virol ; 98(2): e0126823, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38240588

RESUMEN

Protein knockdown with an inducible degradation system is a powerful tool for studying proteins of interest in living cells. Here, we adopted the auxin-inducible degron (AID) approach to detail Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) function in latency maintenance and inducible viral lytic gene expression. We fused the mini-auxin-inducible degron (mAID) tag at the LANA N-terminus with KSHV bacterial artificial chromosome 16 recombination, and iSLK cells were stably infected with the recombinant KSHV encoding mAID-LANA. Incubation with 5-phenyl-indole-3-acetic acid, a derivative of natural auxin, rapidly degraded LANA within 1.5 h. In contrast to our hypothesis, depletion of LANA alone did not trigger lytic reactivation but rather decreased inducible lytic gene expression when we stimulated reactivation with a combination of ORF50 protein expression and sodium butyrate. Decreased overall lytic gene induction seemed to be associated with a rapid loss of KSHV genomes in the absence of LANA. The rapid loss of viral genomic DNA was blocked by a lysosomal inhibitor, chloroquine. Furthermore, siRNA-mediated knockdown of cellular innate immune proteins, cyclic AMP-GMP synthase (cGAS) and simulator of interferon genes (STING), and other autophagy-related genes rescued the degradation of viral genomic DNA upon LANA depletion. Reduction of the viral genome was not observed in 293FT cells that lack the expression of cGAS. These results suggest that LANA actively prevents viral genomic DNA from sensing by cGAS-STING signaling axis, adding novel insights into the role of LANA in latent genome maintenance.IMPORTANCESensing of pathogens' components is a fundamental cellular immune response. Pathogens have therefore evolved strategies to evade such cellular immune responses. KSHV LANA is a multifunctional protein and plays an essential role in maintaining the latent infection by tethering viral genomic DNA to the host chromosome. We adopted the inducible protein knockdown approach and found that depletion of LANA induced rapid degradation of viral genomic DNA, which is mediated by innate immune DNA sensors and autophagy pathway. These observations suggest that LANA may play a role in hiding KSHV episome from innate immune DNA sensors. Our study thus provides new insights into the role of LANA in latency maintenance.


Asunto(s)
Antígenos Virales , Herpesvirus Humano 8 , Plásmidos , Sarcoma de Kaposi , Humanos , Antígenos Virales/metabolismo , ADN , Herpesvirus Humano 8/fisiología , Ácidos Indolacéticos , Nucleotidiltransferasas/genética , Sarcoma de Kaposi/virología , Latencia del Virus , Proteínas Nucleares/metabolismo
14.
J Virol ; 98(6): e0057624, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38767375

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE: Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Proteínas del Envoltorio Viral , Proteínas Virales , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , Animales , Ratones , Proteínas Virales/metabolismo , Proteínas Virales/genética , Sarcoma de Kaposi/virología , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Línea Celular , Enfermedad de Castleman/virología , Enfermedad de Castleman/metabolismo , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/metabolismo , Células HEK293 , Células Endoteliales/virología
15.
J Virol ; 98(2): e0138623, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38240593

RESUMEN

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Histonas/genética , Histonas/metabolismo , Nucleosomas , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Latencia del Virus/genética , Antígenos Virales/genética , Antígenos Virales/metabolismo , Secuencias Repetidas Terminales/genética , Regulación Viral de la Expresión Génica
16.
J Virol ; 98(6): e0000524, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38717113

RESUMEN

TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE: TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Proteolisis , Transactivadores , Factores de Transcripción , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Activación Viral , Replicación Viral , Humanos , Apoptosis , Línea Celular , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/patogenicidad , Herpesvirus Humano 8/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Linfoma de Efusión Primaria/virología , Linfoma de Efusión Primaria/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Latencia del Virus
17.
PLoS Pathog ; 19(1): e1010753, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689549

RESUMEN

Kaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), a hyperplasia consisting of enlarged malformed vasculature and spindle-shaped cells, the main proliferative component of KS. While spindle cells express markers of lymphatic and blood endothelium, the origin of spindle cells is unknown. Endothelial precursor cells have been proposed as the source of spindle cells. We previously identified two types of circulating endothelial colony forming cells (ECFCs), ones that expressed markers of blood endothelium and ones that expressed markers of lymphatic endothelium. Here we examined both blood and lymphatic ECFCs infected with KSHV. Lymphatic ECFCs are significantly more susceptible to KSHV infection than the blood ECFCs and maintain the viral episomes during passage in culture while the blood ECFCs lose the viral episome. Only the KSHV-infected lymphatic ECFCs (K-ECFCLY) grew to small multicellular colonies in soft agar whereas the infected blood ECFCs and all uninfected ECFCs failed to proliferate. The K-ECFCLYs express high levels of SOX18, which supported the maintenance of high copy number of KSHV genomes. When implanted subcutaneously into NSG mice, the K-ECFCLYs persisted in vivo and recapitulated the phenotype of KS tumor cells with high number of viral genome copies and spindling morphology. These spindle cell hallmarks were significantly reduced when mice were treated with SOX18 inhibitor, SM4. These data suggest that KSHV-infected lymphatic ECFCs can be utilized as a KSHV infection model for in vivo translational studies to test novel inhibitors representing potential treatment modalities for KS.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Animales , Ratones , Herpesvirus Humano 8/genética , Células Endoteliales , Endotelio Vascular/patología
18.
PLoS Pathog ; 19(9): e1011169, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37669313

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identify specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Polifarmacología , África , Cognición , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular , Proteína Serina-Treonina Quinasas de Interacción con Receptores
19.
PLoS Pathog ; 19(5): e1011385, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37163552

RESUMEN

Kaposi's Sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's Sarcoma (KS), a highly vascularized tumor common in AIDS patients and many countries in Africa. KSHV is predominantly in the latent state in the main KS tumor cell, the spindle cell, a cell expressing endothelial cell markers. To identify host genes important for KSHV latent infection of endothelial cells we previously used a global CRISPR/Cas9 screen to identify genes necessary for the survival or proliferation of latently infected cells. In this study we rescreened top hits and found that the highest scoring gene necessary for infected cell survival is the anti-apoptotic Bcl-2 family member Bcl-xL. Knockout of Bcl-xL or treatment with a Bcl-xL inhibitor leads to high levels of cell death in latently infected endothelial cells but not their mock counterparts. Cell death occurs through apoptosis as shown by increased PARP cleavage and activation of caspase-3/7. Knockout of the pro-apoptotic protein, Bax, eliminates the requirement for Bcl-xL. Interestingly, neither Bcl-2 nor Mcl-1, related and often redundant anti-apoptotic proteins of the Bcl-2 protein family, are necessary for the survival of latently infected endothelial cells, likely due to their lack of expression in all the endothelial cell types we have examined. Bcl-xL is not required for the survival of latently infected primary effusion lymphoma (PEL) cells or other cell types tested. Expression of the KSHV major latent locus alone in the absence of KSHV infection led to sensitivity to the absence of Bcl-xL, indicating that viral gene expression from the latent locus induces intrinsic apoptosis leading to the requirement for Bcl-xL in endothelial cells. The critical requirement of Bcl-xL during KSHV latency makes it an intriguing therapeutic target for KS tumors.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Apoptosis , Células Endoteliales/metabolismo , Herpesvirus Humano 8/fisiología , Latencia del Virus/fisiología
20.
PLoS Pathog ; 19(1): e1011089, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638143

RESUMEN

Primary effusion lymphoma (PEL) caused by Kaposi sarcoma-associated herpesvirus (KSHV) is an aggressive malignancy with poor prognosis even under chemotherapy. Currently, there is no specific treatment for PEL therefore requiring new therapies. Both histone deacetylases (HDACs) and bromodomain-containing protein 4 (BRD4) have been found as therapeutic targets for PEL through inducing viral lytic reactivation. However, the strategy of dual targeting with one agent and potential synergistic effects have never been explored. In the current study, we first demonstrated the synergistic effect of concurrently targeting HDACs and BRD4 on KSHV reactivation by using SAHA or entinostat (HDACs inhibitors) and (+)-JQ1 (BRD4 inhibitor), which indicated dual blockage of HDACs/BRD4 is a viable therapeutic approach. We were then able to rationally design and synthesize a series of new small-molecule inhibitors targeting HDACs and BRD4 with a balanced activity profile by generating a hybrid of the key binding motifs between (+)-JQ1 and entinostat or SAHA. Upon two iterative screenings of optimized compounds, a pair of epimers, 009P1 and 009P2, were identified to better inhibit the growth of KSHV positive lymphomas compared to (+)-JQ1 or SAHA alone at low nanomolar concentrations, but not KSHV negative control cells or normal cells. Mechanistic studies of 009P1 and 009P2 demonstrated significantly enhanced viral reactivation, cell cycle arrest and apoptosis in KSHV+ lymphomas through dually targeting HDACs and BRD4 signaling activities. Importantly, in vivo preclinical studies showed that 009P1 and 009P2 dramatically suppressed KSHV+ lymphoma progression with oral bioavailability and minimal visible toxicity. These data together provide a novel strategy for the development of agents for inducing lytic activation-based therapies against these viruses-associated malignancies.


Asunto(s)
Herpesvirus Humano 8 , Linfoma de Efusión Primaria , Sarcoma de Kaposi , Humanos , Factores de Transcripción/metabolismo , Proteínas Nucleares/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Herpesvirus Humano 8/fisiología , Línea Celular Tumoral , Proteínas de Ciclo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA