Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 88: 59-83, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30830799

RESUMEN

Directional transport of protons across an energy transducing membrane-proton pumping-is ubiquitous in biology. Bacteriorhodopsin (bR) is a light-driven proton pump that is activated by a buried all-trans retinal chromophore being photoisomerized to a 13-cis conformation. The mechanism by which photoisomerization initiates directional proton transport against a proton concentration gradient has been studied by a myriad of biochemical, biophysical, and structural techniques. X-ray free electron lasers (XFELs) have created new opportunities to probe the structural dynamics of bR at room temperature on timescales from femtoseconds to milliseconds using time-resolved serial femtosecond crystallography (TR-SFX). Wereview these recent developments and highlight where XFEL studies reveal new details concerning the structural mechanism of retinal photoisomerization and proton pumping. We also discuss the extent to which these insights were anticipated by earlier intermediate trapping studies using synchrotron radiation. TR-SFX will open up the field for dynamical studies of other proteins that are not naturally light-sensitive.


Asunto(s)
Bacteriorodopsinas/ultraestructura , Rayos Láser , Protones , Retinaldehído/química , Difracción de Rayos X/métodos , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Cristalografía/instrumentación , Cristalografía/métodos , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Transporte Iónico , Modelos Moleculares , Conformación Proteica , Retinaldehído/metabolismo , Sincrotrones/instrumentación , Rayos X
2.
Annu Rev Biochem ; 88: 35-58, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30601681

RESUMEN

X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.


Asunto(s)
Electrones , Sustancias Macromoleculares/ultraestructura , Fotones , Virión/ultraestructura , Difracción de Rayos X/métodos , Cristalización/instrumentación , Cristalización/métodos , Cristalografía por Rayos X/historia , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Historia del Siglo XX , Historia del Siglo XXI , Rayos Láser/historia , Sincrotrones/instrumentación , Difracción de Rayos X/historia , Difracción de Rayos X/instrumentación , Rayos X
3.
J Radiol Prot ; 43(2)2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37257434

RESUMEN

Iranian Light Source Facility (ILSF) is an under-construction synchrotron radiation accelerator consisting of a 150 MeV linac, a booster synchrotron operating from 150 MeV to 3 GeV, and a 3 GeV storage ring that stores a maximum of 400 mA current of electrons. As the stored beam circulates, a fraction of the beam is lost due to interactions with gas molecules, interactions among beam particles, and orbital bending, which produce radiation. The bulk shielding calculation for the ILSF and the input parameters used for this analysis are discussed in this paper. The potential of skyshine neutrons to cause radiation hazards is investigated as well. Moreover, the design and shielding simulation using the FLUKA Monte Carlo code is presented for the linac beam stop and primary and scattered gas bremsstrahlung for the first optics enclosure of the ILSF spectro microscopy beamline. Our designed radiation shielding system guarantees that the annual dose in all areas around the ILSF machine does not exceed the dose limit of 1 mSv.


Asunto(s)
Simulación por Computador , Protección Radiológica , Sincrotrones , Irán , Método de Montecarlo , Neutrones , Dosis de Radiación , Sincrotrones/instrumentación , Sincrotrones/normas , Electrones
4.
Biochem J ; 478(6): 1227-1239, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33616158

RESUMEN

Hepatocytes are essential for maintaining the homeostasis of iron and lipid metabolism in mammals. Dysregulation of either iron or lipids has been linked with serious health consequences, including non-alcoholic fatty liver disease (NAFLD). Considered the hepatic manifestation of metabolic syndrome, NAFLD is characterised by dysregulated lipid metabolism leading to a lipid storage phenotype. Mild to moderate increases in hepatic iron have been observed in ∼30% of individuals with NAFLD; however, direct observation of the mechanism behind this increase has remained elusive. To address this issue, we sought to determine the metabolic consequences of iron loading on cellular metabolism using live cell, time-lapse Fourier transform infrared (FTIR) microscopy utilising a synchrotron radiation source to track biochemical changes. The use of synchrotron FTIR is non-destructive and label-free, and allowed observation of spatially resolved, sub-cellular biochemical changes over a period of 8 h. Using this approach, we have demonstrated that iron loading in AML12 cells induced perturbation of lipid metabolism congruent with steatosis development. Iron-loaded cells had approximately three times higher relative ester carbonyl concentration compared with controls, indicating an accumulation of triglycerides. The methylene/methyl ratio qualitatively suggests the acyl chain length of fatty acids in iron-loaded cells increased over the 8 h period of monitoring compared with a reduction observed in the control cells. Our findings provide direct evidence that mild to moderate iron loading in hepatocytes drives de novo lipid synthesis, consistent with a role for iron in the initial hepatic lipid accumulation that leads to the development of hepatic steatosis.


Asunto(s)
Rastreo Celular/métodos , Hígado Graso/patología , Hepatocitos/metabolismo , Sobrecarga de Hierro/fisiopatología , Hierro/metabolismo , Sincrotrones/instrumentación , Imagen de Lapso de Tiempo/métodos , Animales , Hígado Graso/metabolismo , Hepatocitos/citología , Metabolismo de los Lípidos , Ratones , Microscopía
5.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L17-L28, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33881927

RESUMEN

In pulmonary arterial hypertension, plexiform lesions are associated with severe arterial obstruction and right ventricular failure. Exploring their structure and position is crucial for understanding the interplay between hemodynamics and vascular remodeling. The aim of this research was to use synchrotron-based phase-contrast micro-CT to study the three-dimensional structure of plexiform lesions. Archived paraffin-embedded tissue samples from 14 patients with pulmonary arterial hypertension (13 idiopathic, 1 with known BMPR2-mutation) were imaged. Clinical data showed high-median PVR (12.5 WU) and mPAP (68 mmHg). Vascular lesions with more than 1 lumen were defined as plexiform. Prior radiopaque dye injection in some samples facilitated 3-D rendering. Four distinct types of plexiform lesions were identified: 1) localized within or derived from monopodial branches (supernumerary arteries), often with a connection to the vasa vasorum; 2) localized between pulmonary arteries and larger airways as a tortuous transformation of intrapulmonary bronchopulmonary anastomoses; 3) as spherical structures at unexpected abrupt ends of distal pulmonary arteries; and 4) as occluded pulmonary arteries with recanalization. By appearance and localization, types 1-2 potentially relieve pressure via the bronchial circulation, as pulmonary arteries in these patients were almost invariably occluded distally. In addition, types 1-3 were often surrounded by dilated thin-walled vessels, often connected to pulmonary veins, peribronchial vessels, or the vasa vasorum. Collaterals, bypassing completely occluded pulmonary arteries, were also observed to originate within plexiform lesions. In conclusion, synchrotron-based imaging revealed significant plexiform lesion heterogeneity, resulting in a novel classification. The four types likely have different effects on hemodynamics and disease progression.


Asunto(s)
Hipertensión Pulmonar Primaria Familiar/diagnóstico , Microscopía de Contraste de Fase/métodos , Arteria Pulmonar/patología , Sincrotrones/instrumentación , Microtomografía por Rayos X/métodos , Adulto , Estudios de Casos y Controles , Hipertensión Pulmonar Primaria Familiar/clasificación , Hipertensión Pulmonar Primaria Familiar/diagnóstico por imagen , Femenino , Hemodinámica , Humanos , Masculino , Remodelación Vascular
6.
Nat Methods ; 15(11): 901-904, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30377366

RESUMEN

We present a 'hit-and-return' (HARE) method for time-resolved serial synchrotron crystallography with time resolution from milliseconds to seconds or longer. Timing delays are set mechanically, using the regular pattern in fixed-target crystallography chips and a translation stage system. Optical pump-probe experiments to capture intermediate structures of fluoroacetate dehalogenase binding to its ligand demonstrated that data can be collected at short (30 ms), medium (752 ms) and long (2,052 ms) intervals.


Asunto(s)
Cristalografía por Rayos X , Hidrolasas/química , Conformación Proteica , Rhodopseudomonas/enzimología , Sincrotrones/instrumentación , Diseño de Equipo , Modelos Moleculares , Factores de Tiempo
7.
Nat Methods ; 15(10): 799-804, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30275593

RESUMEN

The accuracy of X-ray diffraction data is directly related to how the X-ray detector records photons. Here we describe the application of a direct-detection charge-integrating pixel-array detector (JUNGFRAU) in macromolecular crystallography (MX). JUNGFRAU features a uniform response on the subpixel level, linear behavior toward high photon rates, and low-noise performance across the whole dynamic range. We demonstrate that these features allow accurate MX data to be recorded at unprecedented speed. We also demonstrate improvements over previous-generation detectors in terms of data quality, using native single-wavelength anomalous diffraction (SAD) phasing, for thaumatin, lysozyme, and aminopeptidase N. Our results suggest that the JUNGFRAU detector will substantially improve the performance of synchrotron MX beamlines and equip them for future synchrotron light sources.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Recolección de Datos/métodos , Sustancias Macromoleculares/química , Sincrotrones/instrumentación , Antígenos CD13/química , Diseño de Equipo , Humanos , Modelos Moleculares , Muramidasa/química
8.
J Synchrotron Radiat ; 28(Pt 5): 1321-1332, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475281

RESUMEN

Synchrotron X-ray footprinting (XF) is a growing structural biology technique that leverages radiation-induced chemical modifications via X-ray radiolysis of water to produce hydroxyl radicals that probe changes in macromolecular structure and dynamics in solution states of interest. The X-ray Footprinting of Biological Materials (XFP) beamline at the National Synchrotron Light Source II provides the structural biology community with access to instrumentation and expert support in the XF method, and is also a platform for development of new technological capabilities in this field. The design and implementation of a new high-throughput endstation device based around use of a 96-well PCR plate form factor and supporting diagnostic instrumentation for synchrotron XF is described. This development enables a pipeline for rapid comprehensive screening of the influence of sample chemistry on hydroxyl radical dose using a convenient fluorescent assay, illustrated here with a study of 26 organic compounds. The new high-throughput endstation device and sample evaluation pipeline now available at the XFP beamline provide the worldwide structural biology community with a robust resource for carrying out well optimized synchrotron XF studies of challenging biological systems with complex sample compositions.


Asunto(s)
Huella de Proteína/métodos , Proteínas/química , Proteínas/efectos de la radiación , Sincrotrones/instrumentación , Diseño de Equipo , Radical Hidroxilo/química , Radical Hidroxilo/efectos de la radiación , Conformación Proteica , Agua/química , Rayos X
9.
J Synchrotron Radiat ; 28(Pt 4): 1237-1244, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34212889

RESUMEN

During the COVID-19 pandemic, synchrotron beamlines were forced to limit user access. Performing routine measurements became a challenge. At the Life Science X-ray Scattering (LiX) beamline, new instrumentation and mail-in protocols have been developed to remove the access barrier to solution scattering measurements. Our efforts took advantage of existing instrumentation and coincided with the larger effort at NSLS-II to support remote measurements. Given the limited staff-user interaction for mail-in measurements, additional software tools have been developed to ensure data quality, to automate the adjustments in data processing, as users would otherwise rely on the experience of the beamline staff, and produce a summary of the initial assessments of the data. This report describes the details of these developments.


Asunto(s)
Dispersión del Ángulo Pequeño , Soluciones/efectos de la radiación , Sincrotrones/instrumentación , Difracción de Rayos X/instrumentación , Tampones (Química) , COVID-19 , Recolección de Datos , Conjuntos de Datos como Asunto , Procesamiento Automatizado de Datos , Pandemias , Robótica , SARS-CoV-2 , Programas Informáticos , Manejo de Especímenes , Agua
10.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34639083

RESUMEN

We used infrared (IR) microscopy to monitor in real-time the metabolic turnover of individual mammalian cells in morphologically different states. By relying on the intrinsic absorption of mid-IR light by molecular components, we could discriminate the metabolism of adherent cells as compared to suspended cells. We identified major biochemical differences between the two cellular states, whereby only adherent cells appeared to rely heavily on glycolytic turnover and lactic fermentation. We also report spectroscopic variations that appear as spectral oscillations in the IR domain, observed only when using synchrotron infrared radiation. We propose that this effect could be used as a reporter of the cellular conditions. Our results are instrumental in establishing IR microscopy as a label-free method for real-time metabolic studies of individual cells in different morphological states, and in more complex cellular ensembles.


Asunto(s)
Adhesión Celular , Metaboloma , Microscopía/métodos , Análisis de la Célula Individual/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sincrotrones/instrumentación , Glucólisis , Células HEK293 , Humanos , Rayos Infrarrojos
11.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884589

RESUMEN

The non-targeted effects of radiation have been known to induce significant alternations in cell survival. Although the effects might govern the progression of tumor sites following advanced radiotherapy, the impacts on the intercellular control of the cell cycle following radiation exposure with a modified field, remain to be determined. Recently, a fluorescent ubiquitination-based cell-cycle indicator (FUCCI), which can visualize the cell-cycle phases with fluorescence microscopy in real time, was developed for biological cell research. In this study, we investigated the non-targeted effects on the regulation of the cell cycle of human cervical carcinoma (HeLa) cells with imperfect p53 function that express the FUCCI (HeLa-FUCCI cells). The possible effects on the cell-cycle phases via soluble factors were analyzed following exposure to different field configurations, which were delivered using a 150 kVp X-ray irradiator. In addition, using synchrotron-generated, 5.35 keV monochromatic X-ray microbeams, high-precision 200 µm-slit microbeam irradiation was performed to investigate the possible impacts on the cell-cycle phases via cell-cell contacts. Collectively, we could not detect the intercellular regulation of the cell cycle in HeLa-FUCCI cells, which suggested that the unregulated cell growth was a malignant tumor. Our findings indicated that there was no significant intercellular control system of the cell cycle in malignant tumors during or after radiotherapy, highlighting the differences between normal tissue and tumor characteristics.


Asunto(s)
Ciclo Celular , Colorantes Fluorescentes/química , Sincrotrones/instrumentación , Ubiquitinación , Neoplasias del Cuello Uterino/patología , Supervivencia Celular , Femenino , Células HeLa , Humanos , Microscopía Fluorescente , Rayos X
12.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884475

RESUMEN

Coaxial core/shell electrospun nanofibers consisting of ferroelectric P(VDF-TrFE) and relaxor ferroelectric P(VDF-TrFE-CTFE) are tailor-made with hierarchical structures to modulate their mechanical properties with respect to their constituents. Compared with two single and the other coaxial membranes prepared in the research, the core/shell-TrFE/CTFE membrane shows a more prominent mechanical anisotropy between revolving direction (RD) and cross direction (CD) associated with improved resistance to tensile stress for the crystallite phase stability and good strength-ductility balance. This is due to the better degree of core/shell-TrFE-CTFE nanofiber alignment and the crystalline/amorphous ratio. The coupling between terpolymer P(VDF-TrFE-CTFE) and copolymer P(VDF-TrFE) is responsible for phase stabilization, comparing the core/shell-TrFE/CTFE with the pristine terpolymer. Moreover, an impressive collective deformation mechanism of a two-length scale in the core/shell composite structure is found. We apply in-situ synchrotron X-ray to resolve the two-length scale simultaneously by using the small-angle X-ray scattering to characterize the nanofibers and the wide-angle X-ray diffraction to identify the phase transformations. Our findings may serve as guidelines for the fabrication of the electrospun nanofibers used as membranes-based electroactive polymers.


Asunto(s)
Nanofibras/química , Polivinilos/química , Dispersión del Ángulo Pequeño , Sincrotrones/instrumentación , Resistencia a la Tracción , Difracción de Rayos X/métodos
13.
Molecules ; 26(13)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34279410

RESUMEN

In recent years, biofuels have been receiving significant attention because of their potential for decreasing carbon emissions and providing a long-term renewable solution to unsustainable fossil fuels. Currently, lactones are some of the alternatives being produced. Many lactones occur in a range of natural substances and have many advantages over bioethanol. In this study, the oxidation of alpha-angelica lactone initiated by ground-state atomic oxygen, O(3P), was studied at 298, 550, and 700 K using synchrotron radiation coupled with multiplexed photoionization mass spectrometry at the Lawrence Berkeley National Lab (LBNL). Photoionization spectra and kinetic time traces were measured to identify the primary products. Ketene, acetaldehyde, methyl vinyl ketone, methylglyoxal, dimethyl glyoxal, and 5-methyl-2,4-furandione were characterized as major reaction products, with ketene being the most abundant at all three temperatures. Possible reaction pathways for the formation of the observed primary products were computed using the CBS-QB3 composite method.


Asunto(s)
4-Butirolactona/análogos & derivados , Oxígeno/farmacología , Sincrotrones/instrumentación , 4-Butirolactona/química , Cinética , Oxidación-Reducción , Oxígeno/clasificación , Temperatura
14.
J Synchrotron Radiat ; 27(Pt 3): 804-812, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381785

RESUMEN

This work reports the instrumentation and software implementation at the Life Science X-ray Scattering (LiX) beamline at NSLS-II in support of biomolecular solution scattering. For automated static measurements, samples are stored in PCR tubes and grouped in 18-position sample holders. Unattended operations are enabled using a six-axis robot that exchanges sample holders between a storage box and a sample handler, transporting samples from the PCR tubes to the X-ray beam for scattering measurements. The storage box has a capacity of 20 sample holders. At full capacity, the measurements on all samples last for ∼9 h. For in-line size-exclusion chromatography, the beamline-control software coordinates with a commercial high-performance liquid chromatography (HPLC) system to measure multiple samples in batch mode. The beamline can switch between static and HPLC measurements instantaneously. In all measurements, the scattering data span a wide q-range of typically 0.006-3.2 Å-1. Functionalities in the Python package py4xs have been developed to support automated data processing, including azimuthal averaging, merging data from multiple detectors, buffer scattering subtraction, data storage in HDF5 format and exporting the final data in a three-column text format that is acceptable by most data analysis tools. These functionalities have been integrated into graphical user interfaces that run in Jupyter notebooks, with hooks for external data analysis software.


Asunto(s)
Cromatografía Líquida de Alta Presión , Sincrotrones/instrumentación , Cromatografía en Gel , Diseño de Equipo , Robótica , Dispersión del Ángulo Pequeño , Programas Informáticos , Manejo de Especímenes , Rayos X
15.
J Synchrotron Radiat ; 27(Pt 3): 860-863, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381791

RESUMEN

In this paper, the design and functionalities of the high-throughput TELL sample exchange system for macromolecular crystallography is presented. TELL was developed at the Paul Scherrer Institute with a focus on speed, storage capacity and reliability to serve the three macromolecular crystallography beamlines of the Swiss Light Source, as well as the SwissMX instrument at SwissFEL.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Sustancias Macromoleculares/química , Diseño de Equipo , Reproducibilidad de los Resultados , Robótica/instrumentación , Sincrotrones/instrumentación
17.
Int J Mol Sci ; 21(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397185

RESUMEN

Serial crystallography (SX) provides an opportunity to observe the molecular dynamics of macromolecular structures at room temperature via pump-probe studies. The delivery of crystals embedded in a viscous medium via an injector or syringe is widely performed in synchrotrons or X-ray free-electron laser facilities with low repetition rates. Various viscous media have been developed; however, there are cases in which the delivery material undesirably interacts chemically or biologically with specific protein samples, or changes the stability of the injection stream, depending on the crystallization solution. Therefore, continued discovery and characterization of new delivery media is necessary for expanding future SX applications. Here, the preparation and characterization of new polysaccharide (wheat starch (WS) and alginate)-based sample delivery media are introduced for SX. Crystals embedded in a WS or alginate injection medium showed a stable injection stream at a flow rate of < 200 nL/min and low-level X-ray background scattering similar to other hydrogels. Using these media, serial millisecond crystallography (SMX) was performed, and the room temperature crystal structures of glucose isomerase and lysozyme were determined at 1.9-2.0 Å resolutions. WS and alginate will allow an expanded application of sample delivery media in SX experiments.


Asunto(s)
Cristalización/métodos , Cristalografía por Rayos X/métodos , Polisacáridos/química , Sincrotrones/instrumentación , Isomerasas Aldosa-Cetosa/química , Alginatos/química , Cristalización/instrumentación , Cristalografía por Rayos X/instrumentación , Muramidasa/química , Almidón/química , Jeringas , Temperatura , Viscosidad
18.
J Appl Clin Med Phys ; 20(5): 99-108, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30972922

RESUMEN

PURPOSE: The aim of this work is to describe the clinical implementation of respiratory-gated spot-scanning proton therapy (SSPT) for the treatment of thoracic and abdominal moving targets. The experience of our institution is summarized, from initial acceptance and commissioning tests to the development of standard clinical operating procedures for simulation, motion assessment, motion mitigation, treatment planning, and gated SSPT treatment delivery. MATERIALS AND METHODS: A custom respiratory gating interface incorporating the Real-Time Position Management System (RPM, Varian Medical Systems, Inc., Palo Alto, CA, USA) was developed in-house for our synchrotron-based delivery system. To assess gating performance, a motion phantom and radiochromic films were used to compare gated vs nongated delivery. Site-specific treatment planning protocols and conservative motion cutoffs were developed, allowing for free-breathing (FB), breath-holding (BH), or phase-gating (Ph-G). Room usage efficiency of BH and Ph-G treatments was retrospectively evaluated using beam delivery data retrieved from our record and verify system and DICOM files from patient-specific quality assurance (QA) procedures. RESULTS: More than 70 patients were treated using active motion management between the launch of our motion mitigation program in October 2015 and the end date of data collection of this study in January 2018. During acceptance procedures, we found that overall system latency is clinically-suitable for Ph-G. Regarding room usage efficiency, the average number of energy layers delivered per minute was <10 for Ph-G, 10-15 for BH and ≥15 for FB, making Ph-G the slowest treatment modality. When comparing to continuous delivery measured during pretreatment QA procedures, the median values of BH treatment time were extended from 6.6 to 9.3 min (+48%). Ph-G treatments were extended from 7.3 to 13.0 min (+82%). CONCLUSIONS: Active motion management has been crucial to the overall success of our SSPT program. Nevertheless, our conservative approach has come with an efficiency cost that is more noticeable in Ph-G treatments and should be considered in decision-making.


Asunto(s)
Neoplasias Abdominales/radioterapia , Movimiento , Fantasmas de Imagen , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Neoplasias Torácicas/radioterapia , Contencion de la Respiración , Humanos , Pronóstico , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Sincrotrones/instrumentación
19.
J Appl Clin Med Phys ; 20(9): 69-77, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31538720

RESUMEN

PURPOSE: To quantify the effects of combining layer-based repainting and respiratory gating as a strategy to mitigate the dosimetric degradation caused by the interplay effect between a moving target and dynamic spot-scanning proton delivery. METHODS: An analytic routine modeled three-dimensional dose distributions of pencil-beam proton plans delivered to a moving target. Spot positions and weights were established for a single field to deliver 100 cGy to a static, 15-cm deep, 3-cm radius spherical clinical target volume with a 1-cm isotropic internal target volume expansion. The interplay effect was studied by modeling proton delivery from a clinical synchrotron-based spot scanning system and respiratory target motion, patterned from surrogate patient breathing traces. Motion both parallel and orthogonal to the beam scanning direction was investigated. Repainting was modeled using a layer-based technique. For each of 13 patient breathing traces, the dose from 20 distinct delivery schemes (combinations of four gate window amplitudes and five repainting techniques) was computed. Delivery strategies were inter-compared based on target coverage, dose homogeneity, high dose spillage, and delivery time. RESULTS: Notable degradation and variability in plan quality were observed for ungated delivery. Decreasing the gate window reduced this variability and improved plan quality at the expense of longer delivery times. Dose deviations were substantially greater for motion orthogonal to the scan direction when compared with parallel motion. Repainting coupled with gating was effective at partially restoring dosimetric coverage at only a fraction of the delivery time increase associated with very small gate windows alone. Trends for orthogonal motion were similar, but more complicated, due to the increased severity of the interplay. CONCLUSIONS: Layer-based repainting helps suppress the interplay effect from intra-gate motion, with only a modest penalty in delivery time. The magnitude of the improvement in target coverage is strongly influenced by individual patient breathing patterns and the tumor motion trajectory.


Asunto(s)
Movimiento , Neoplasias/radioterapia , Fantasmas de Imagen , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Sincrotrones/instrumentación , Tomografía Computarizada Cuatridimensional , Humanos , Órganos en Riesgo/efectos de la radiación , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
20.
Anal Bioanal Chem ; 410(25): 6477-6487, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30032447

RESUMEN

FTIR imaging is a label-free, non-destructive method valuably exploited in the study of the biological process in living cells. However, the long wavelength/low spatial resolution and the strong absorbance of water are still key constrains in the application of IR microscopy ex vivo. In this work, a new retrofit approach based on the use of ZnS hemispheres is introduced to significantly improve the spatial resolution on live cell FTIR imaging. By means of two high refractive index domes sandwiching the sample, a lateral resolution close to 2.2 µm at 6 µm wavelength has been achieved, i.e. below the theoretical diffraction limit in air and more than twice the improvement (to ~λ/2.7) from our previous attempt using CaF2 lenses. The ZnS domes also allowed an extended spectral range to 950 cm-1, in contrast to the cut-off at 1050 cm-1 using CaF2. In combination with synchrotron radiation source, microFTIR provides an improved signal-to-noise ratio through the circa 12 µm thin layer of medium, thus allowing detailed distribution of lipids, protein and nucleic acid in the surround of the nucleus of single living cells. Endoplasmic reticula were clearly shown based on the lipid ν(CH) and ν(C=O) bands, while the DNA was imaged based on the ν(PO2-) band highlighting the nucleus region. This work has also included a demonstration of drug (doxorubicin) in cell measurement to highlight the potential of this approach. Graphical abstract.


Asunto(s)
Sulfuros/química , Compuestos de Zinc/química , Células A549 , Humanos , Microscopía/métodos , Fantasmas de Imagen , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sincrotrones/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA