Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 698
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 93(1): 471-498, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38663033

RESUMEN

Three decades of studies on the multifunctional 6-deoxyerythronolide B synthase have laid a foundation for understanding the chemistry and evolution of polyketide antibiotic biosynthesis by a large family of versatile enzymatic assembly lines. Recent progress in applying chemical and structural biology tools to this prototypical assembly-line polyketide synthase (PKS) and related systems has highlighted several features of their catalytic cycles and associated protein dynamics. There is compelling evidence that multiple mechanisms have evolved in this enzyme family to channel growing polyketide chains along uniquely defined sequences of 10-100 active sites, each of which is used only once in the overall catalytic cycle of an assembly-line PKS. Looking forward, one anticipates major advances in our understanding of the mechanisms by which the free energy of a repetitive Claisen-like reaction is harnessed to guide the growing polyketide chain along the assembly line in a manner that is kinetically robust yet evolutionarily adaptable.


Asunto(s)
Dominio Catalítico , Sintasas Poliquetidas , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Modelos Moleculares , Policétidos/metabolismo , Policétidos/química , Conformación Proteica , Especificidad por Sustrato
2.
Annu Rev Biochem ; 87: 503-531, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925265

RESUMEN

Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.


Asunto(s)
Ácido Graso Sintasas/química , Ácido Graso Sintasas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Animales , Biocatálisis , Productos Biológicos/química , Productos Biológicos/metabolismo , Ácido Graso Sintasas/clasificación , Humanos , Modelos Moleculares , Imitación Molecular , Estructura Molecular , Sintasas Poliquetidas/clasificación , Policétidos/química , Policétidos/metabolismo , Dominios Proteicos , Homología Estructural de Proteína , Especificidad por Sustrato
3.
Proc Natl Acad Sci U S A ; 120(9): e2220468120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802426

RESUMEN

The enediynes are structurally characterized by a 1,5-diyne-3-ene motif within a 9- or 10-membered enediyne core. The anthraquinone-fused enediynes (AFEs) are a subclass of 10-membered enediynes that contain an anthraquinone moiety fused to the enediyne core as exemplified by dynemicins and tiancimycins. A conserved iterative type I polyketide synthase (PKSE) is known to initiate the biosynthesis of all enediyne cores, and evidence has recently been reported to suggest that the anthraquinone moiety also originates from the PKSE product. However, the identity of the PKSE product that is converted to the enediyne core or anthraquinone moiety has not been established. Here, we report the utilization of recombinant E. coli coexpressing various combinations of genes that encode a PKSE and a thioesterase (TE) from either 9- or 10-membered enediyne biosynthetic gene clusters to chemically complement ΔPKSE mutant strains of the producers of dynemicins and tiancimycins. Additionally, 13C-labeling experiments were performed to track the fate of the PKSE/TE product in the ΔPKSE mutants. These studies reveal that 1,3,5,7,9,11,13-pentadecaheptaene is the nascent, discrete product of the PKSE/TE that is converted to the enediyne core. Furthermore, a second molecule of 1,3,5,7,9,11,13-pentadecaheptaene is demonstrated to serve as the precursor of the anthraquinone moiety. The results establish a unified biosynthetic paradigm for AFEs, solidify an unprecedented biosynthetic logic for aromatic polyketides, and have implications for the biosynthesis of not only AFEs but all enediynes.


Asunto(s)
Productos Biológicos , Escherichia coli , Escherichia coli/genética , Antraquinonas/química , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Enediinos/química , Antibióticos Antineoplásicos
4.
Nucleic Acids Res ; 51(D1): D532-D538, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36416273

RESUMEN

Megasynthase enzymes such as type I modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) play a central role in microbial chemical warfare because they can evolve rapidly by shuffling parts (catalytic domains) to produce novel chemicals. If we can understand the design rules to reshuffle these parts, PKSs and NRPSs will provide a systematic and modular way to synthesize millions of molecules including pharmaceuticals, biomaterials, and biofuels. However, PKS and NRPS engineering remains difficult due to a limited understanding of the determinants of PKS and NRPS fold and function. We developed ClusterCAD to streamline and simplify the process of designing and testing engineered PKS variants. Here, we present the highly improved ClusterCAD 2.0 release, available at https://clustercad.jbei.org. ClusterCAD 2.0 boasts support for PKS-NRPS hybrid and NRPS clusters in addition to PKS clusters; a vastly enlarged database of curated PKS, PKS-NRPS hybrid, and NRPS clusters; a diverse set of chemical 'starters' and loading modules; the new Domain Architecture Cluster Search Tool; and an offline Jupyter Notebook workspace, among other improvements. Together these features massively expand the chemical space that can be accessed by enzymes engineered with ClusterCAD.


Asunto(s)
Péptido Sintasas , Sintasas Poliquetidas , Programas Informáticos , Péptido Sintasas/biosíntesis , Péptido Sintasas/química , Péptido Sintasas/genética , Sintasas Poliquetidas/biosíntesis , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Biotecnología/métodos
5.
Biochemistry ; 63(18): 2240-2244, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39186058

RESUMEN

Engineered type I polyketide synthases (type I PKSs) can enable access to diverse polyketide pharmacophores and generate non-natural natural products. However, the promise of type I PKS engineering remains modestly realized at best. Here, we report that ketosynthase (KS) domains, the key carbon-carbon bond-forming catalysts, control which intermediates are allowed to progress along the PKS assembly lines and which intermediates are excluded. Using bimodular PKSs, we demonstrate that KSs can be exquisitely selective for the upstream polyketide substrate while retaining promiscuity for the extender unit that they incorporate. It is then the downstream KS that acts as a gatekeeper to ensure the fidelity of the extender unit incorporation by the upstream KS. We also demonstrate that these findings are not universally applicable; substrate-tolerant KSs do allow engineered polyketide intermediates to be extended. Our results demonstrate the utility for evaluating the KS-induced bottlenecks to gauge the feasibility of engineering PKS assembly lines.


Asunto(s)
Sintasas Poliquetidas , Ingeniería de Proteínas , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Ingeniería de Proteínas/métodos , Policétidos/metabolismo , Policétidos/química , Especificidad por Sustrato , Dominios Proteicos
6.
Nat Prod Rep ; 41(8): 1219-1234, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38501175

RESUMEN

Covering: up to the end of 2023Type I modular polyketide synthases construct polyketide natural products in an assembly line-like fashion, where the growing polyketide chain attached to an acyl carrier protein is passed from catalytic domain to catalytic domain. These enzymes have immense potential in drug development since they can be engineered to produce non-natural polyketides by strategically adding, exchanging, and deleting individual catalytic domains. In practice, however, this approach frequently results in complete failures or dramatically reduced product yields. A comprehensive understanding of modular polyketide synthase architecture is expected to resolve these issues. We summarize the three-dimensional structures and the proposed mechanisms of three full-length modular polyketide synthases, Lsd14, DEBS module 1, and PikAIII. We also describe the advantages and limitations of using X-ray crystallography, cryo-electron microscopy, and AlphaFold2 to study intact type I polyketide synthases.


Asunto(s)
Microscopía por Crioelectrón , Sintasas Poliquetidas , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X , Dominio Catalítico , Modelos Moleculares , Policétidos/química , Policétidos/metabolismo
7.
Chemistry ; 30(4): e202302590, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37926691

RESUMEN

Three central steps during the biosynthesis of cytochalasan precursors, including reductive release, Knoevenagel cyclisation and Diels Alder cyclisation are not yet understood at a detailed molecular level. In this work we investigated the reductive release step catalysed by a hybrid polyketide synthase non-ribosomal peptide synthetase (PKS-NRPS) from the pyrichalasin H pathway. Synthetic thiolesters were used as substrate mimics for in vitro studies with the isolated reduction (R) and holo-thiolation (T) domains of the PKS-NRPS hybrid PyiS. These assays demonstrate that the PyiS R-domain mainly catalyses an NADPH-dependent reductive release of an aldehyde intermediate that quickly undergoes spontaneous Knoevenagel cyclisation. The R-domain can only process substrates that are covalently bound to the phosphopantetheine thiol of the upstream T-domain, but it shows little selectivity for the polyketide.


Asunto(s)
Sintasas Poliquetidas , Sintasas Poliquetidas/química
8.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34162709

RESUMEN

Assembly-line polyketide synthases (PKSs) are large and complex enzymatic machineries with a multimodular architecture, typically encoded in bacterial genomes by biosynthetic gene clusters. Their modularity has led to an astounding diversity of biosynthesized molecules, many with medical relevance. Thus, understanding the mechanisms that drive PKS evolution is fundamental for both functional prediction of natural PKSs as well as for the engineering of novel PKSs. Here, we describe a repetitive genetic element in assembly-line PKS genes which appears to play a role in accelerating the diversification of closely related biosynthetic clusters. We named this element GRINS: genetic repeats of intense nucleotide skews. GRINS appear to recode PKS protein regions with a biased nucleotide composition and to promote gene conversion. GRINS are present in a large number of assembly-line PKS gene clusters and are particularly widespread in the actinobacterial genus Streptomyces While the molecular mechanisms associated with GRINS appearance, dissemination, and maintenance are unknown, the presence of GRINS in a broad range of bacterial phyla and gene families indicates that these genetic elements could play a fundamental role in protein evolution.


Asunto(s)
Variación Genética , Sintasas Poliquetidas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secuencia de Bases , Evolución Molecular , Conversión Génica , Genoma Bacteriano , Familia de Multigenes , Nucleótidos/genética , Filogenia , Sintasas Poliquetidas/química , Dominios Proteicos , Streptomyces/enzimología , Streptomyces/genética
9.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731473

RESUMEN

Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.


Asunto(s)
Familia de Multigenes , Péptido Sintasas , Sintasas Poliquetidas , Streptomyces , Streptomyces/genética , Streptomyces/enzimología , Streptomyces/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
10.
Angew Chem Int Ed Engl ; 63(20): e202402663, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38467568

RESUMEN

Thielavin A (1) is a fungal depside composed of one 3-methylorsellinic acid and two 3,5-dimethylorsellinic acid units. It displays diverse biological activities. However, the mechanism underlying the assembly of the heterotrimeric structure of 1 remains to be clarified. In this study, we identified the polyketide synthase (PKS) involved in the biosynthesis of 1. This PKS, designated as ThiA, possesses an unusual domain organization with the C-methyltransferase (MT) domain situated at the C-terminus following the thioesterase (TE) domain. Our findings indicated that the TE domain is solely responsible for two rounds of ester bond formation, along with subsequent chain hydrolysis. We identified a plausible mechanism for TE-catalyzed reactions and obtained insights into how a single PKS can selectively yield a specific heterotrimeric product. In particular, the tandem acyl carrier protein domains of ThiA are critical for programmed methylation by the MT domain. Overall, this study highlighted the occurrence of highly optimized domain-domain communication within ThiA for the selective synthesis of 1, which can advance our understanding of the programming rules of fungal PKSs.


Asunto(s)
Depsidos , Sintasas Poliquetidas , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Depsidos/metabolismo , Depsidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA