Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.027
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 36: 783-812, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29677475

RESUMEN

The nervous system regulates immunity and inflammation. The molecular detection of pathogen fragments, cytokines, and other immune molecules by sensory neurons generates immunoregulatory responses through efferent autonomic neuron signaling. The functional organization of this neural control is based on principles of reflex regulation. Reflexes involving the vagus nerve and other nerves have been therapeutically explored in models of inflammatory and autoimmune conditions, and recently in clinical settings. The brain integrates neuro-immune communication, and brain function is altered in diseases characterized by peripheral immune dysregulation and inflammation. Here we review the anatomical and molecular basis of the neural interface with immunity, focusing on peripheral neural control of immune functions and the role of the brain in the model of the immunological homunculus. Clinical advances stemming from this knowledge within the framework of bioelectronic medicine are also briefly outlined.


Asunto(s)
Neuroinmunomodulación , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Humanos , Inmunidad , Sistema Nervioso/anatomía & histología , Sistema Nervioso/inmunología , Sistema Nervioso/metabolismo , Fenómenos Fisiológicos del Sistema Nervioso , Neuroinmunomodulación/genética , Neuroinmunomodulación/inmunología , Transducción de Señal , Investigación Biomédica Traslacional
2.
Cell ; 186(12): 2544-2555.e13, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295402

RESUMEN

In poikilotherms, temperature changes challenge the integration of physiological function. Within the complex nervous systems of the behaviorally sophisticated coleoid cephalopods, these problems are substantial. RNA editing by adenosine deamination is a well-positioned mechanism for environmental acclimation. We report that the neural proteome of Octopus bimaculoides undergoes massive reconfigurations via RNA editing following a temperature challenge. Over 13,000 codons are affected, and many alter proteins that are vital for neural processes. For two highly temperature-sensitive examples, recoding tunes protein function. For synaptotagmin, a key component of Ca2+-dependent neurotransmitter release, crystal structures and supporting experiments show that editing alters Ca2+ binding. For kinesin-1, a motor protein driving axonal transport, editing regulates transport velocity down microtubules. Seasonal sampling of wild-caught specimens indicates that temperature-dependent editing occurs in the field as well. These data show that A-to-I editing tunes neurophysiological function in response to temperature in octopus and most likely other coleoids.


Asunto(s)
Octopodiformes , Proteoma , Animales , Proteoma/metabolismo , Octopodiformes/genética , Edición de ARN , Temperatura , Sistema Nervioso/metabolismo , Adenosina Desaminasa/metabolismo , ARN/metabolismo
3.
Annu Rev Cell Dev Biol ; 40(1): 407-425, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39052757

RESUMEN

In animals, the nervous system evolved as the primary interface between multicellular organisms and the environment. As organisms became larger and more complex, the primary functions of the nervous system expanded to include the modulation and coordination of individual responsive cells via paracrine and synaptic functions as well as to monitor and maintain the organism's own internal environment. This was initially accomplished via paracrine signaling and eventually through the assembly of multicell circuits in some lineages. Cells with similar functions and centralized nervous systems have independently arisen in several lineages. We highlight the molecular mechanisms that underlie parallel diversifications of the nervous system.


Asunto(s)
Sistema Nervioso , Animales , Sistema Nervioso/metabolismo , Evolución Biológica , Humanos , Transducción de Señal/genética
4.
Cell ; 184(16): 4329-4347.e23, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237253

RESUMEN

We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of ∼23 neuropeptide genes and ∼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.


Asunto(s)
Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colorantes Fluorescentes/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Larva/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Motivos de Nucleótidos/genética , RNA-Seq , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Cell ; 181(2): 219-222, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302564

RESUMEN

Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.


Asunto(s)
Neoplasias/metabolismo , Sistema Nervioso/metabolismo , Humanos , Neurociencias
6.
Cell ; 174(4): 999-1014.e22, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096314

RESUMEN

The mammalian nervous system executes complex behaviors controlled by specialized, precisely positioned, and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse and were grouped by developmental anatomical units and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission, and membrane conductance. We discovered seven distinct, regionally restricted astrocyte types that obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity followed by a secondary diversification. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system and enables genetic manipulation of specific cell types.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Sistema Nervioso/metabolismo , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Sistema Nervioso/crecimiento & desarrollo
7.
Cell ; 174(1): 156-171.e16, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29909984

RESUMEN

Extracellular proTGF-ß is covalently linked to "milieu" molecules in the matrix or on cell surfaces and is latent until TGF-ß is released by integrins. Here, we show that LRRC33 on the surface of microglia functions as a milieu molecule and enables highly localized, integrin-αVß8-dependent TGF-ß activation. Lrrc33-/- mice lack CNS vascular abnormalities associated with deficiency in TGF-ß-activating integrins but have microglia with a reactive phenotype and after 2 months develop ascending paraparesis with loss of myelinated axons and death by 5 months. Whole bone marrow transplantation results in selective repopulation of Lrrc33-/- brains with WT microglia and halts disease progression. The phenotypes of WT and Lrrc33-/- microglia in the same brain suggest that there is little spreading of TGF-ß activated from one microglial cell to neighboring microglia. Our results suggest that interactions between integrin-bearing cells and cells bearing milieu molecule-associated TGF-ß provide localized and selective activation of TGF-ß.


Asunto(s)
Proteínas Portadoras/metabolismo , Microglía/metabolismo , Sistema Nervioso/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Axones/metabolismo , Trasplante de Médula Ósea , Encéfalo/metabolismo , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Células Cultivadas , Integrinas/metabolismo , Estimación de Kaplan-Meier , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/citología , Mutagénesis Sitio-Dirigida , Enfermedades Neurodegenerativas/mortalidad , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Filogenia , Unión Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Factor de Crecimiento Transformador beta/genética
8.
Cell ; 169(2): 191-202.e11, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388405

RESUMEN

RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals for this purpose. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of the nature and effects of these events. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system, affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein-coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function. PAPERCLIP.


Asunto(s)
Evolución Biológica , Cefalópodos/genética , Edición de ARN , Transcriptoma , Adenosina Desaminasa/metabolismo , Secuencia de Aminoácidos , Animales , Cefalópodos/clasificación , Cefalópodos/metabolismo , Sistema Nervioso/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Alineación de Secuencia
9.
Immunity ; 55(4): 592-605, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417674

RESUMEN

Nonresolving inflammation contributes to many diseases, including COVID-19 in its fatal and long forms. Our understanding of inflammation is rapidly evolving. Like the immune system of which it is a part, inflammation can now be seen as an interactive component of a homeostatic network with the endocrine and nervous systems. This review samples emerging insights regarding inflammatory memory, inflammatory aging, inflammatory cell death, inflammatory DNA, inflammation-regulating cells and metabolites, approaches to resolving or modulating inflammation, and inflammatory inequity.


Asunto(s)
COVID-19 , Homeostasis , Humanos , Sistema Inmunológico/metabolismo , Inflamación , Sistema Nervioso/metabolismo
10.
Cell ; 165(4): 801-11, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153494

RESUMEN

Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging, and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This Review focuses on neuro-immune interactions at barrier surfaces-mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges.


Asunto(s)
Sistema Inmunológico/metabolismo , Membrana Mucosa/inmunología , Membrana Mucosa/inervación , Sistema Nervioso/anatomía & histología , Animales , Hematopoyesis , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/inervación , Intestinos/inmunología , Intestinos/inervación , Tejido Linfoide/inmunología , Tejido Linfoide/fisiología , Sistema Nervioso/metabolismo , Neuronas/citología
11.
Immunity ; 52(3): 464-474, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32187517

RESUMEN

The ability of the nervous system to sense environmental stimuli and to relay these signals to immune cells via neurotransmitters and neuropeptides is indispensable for effective immunity and tissue homeostasis. Depending on the tissue microenvironment and distinct drivers of a certain immune response, the same neuronal populations and neuro-mediators can exert opposing effects, promoting or inhibiting tissue immunity. Here, we review the current understanding of the mechanisms that underlie the complex interactions between the immune and the nervous systems in different tissues and contexts. We outline current gaps in knowledge and argue for the importance of considering infectious and inflammatory disease within a conceptual framework that integrates neuro-immune circuits both local and systemic, so as to better understand effective immunity to develop improved approaches to treat inflammation and disease.


Asunto(s)
Sistema Inmunológico/inmunología , Sistema Nervioso/inmunología , Neuroinmunomodulación/inmunología , Neuronas/inmunología , Animales , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/metabolismo , Inmunidad Innata/inmunología , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Inflamación Neurogénica/inmunología , Inflamación Neurogénica/metabolismo , Neuronas/metabolismo , Neuropéptidos/inmunología , Neuropéptidos/metabolismo , Transducción de Señal/inmunología
12.
Annu Rev Cell Dev Biol ; 30: 393-415, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25068488

RESUMEN

The cytoplasmic polyadenylation element binding (CPEB) proteins are sequence-specific mRNA binding proteins that control translation in development, health, and disease. CPEB1, the founding member of this family, has become an important model for illustrating general principles of translational control by cytoplasmic polyadenylation in gametogenesis, cancer etiology, synaptic plasticity, learning, and memory. Although the biological functions of the other members of this protein family in vertebrates are just beginning to emerge, it is already evident that they, too, mediate important processes, such as cancer etiology and higher cognitive function. In Drosophila, the CPEB proteins Orb and Orb2 play key roles in oogenesis and in neuronal function, as do related proteins in Caenorhabditis elegans and Aplysia. We review the biochemical features of the CPEB proteins, discuss their activities in several biological systems, and illustrate how understanding CPEB activity in model organisms has an important impact on neurological disease.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Factores de Escisión y Poliadenilación de ARNm/fisiología , Amiloide/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Senescencia Celular , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Poliadenilación
13.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38358799

RESUMEN

The Wnt/ß-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of ß-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/ß-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.


Asunto(s)
Receptores Frizzled , Glucógeno Sintasa Quinasa 3 , beta Catenina , Humanos , beta Catenina/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Mesencéfalo , Sistema Nervioso/metabolismo , Vía de Señalización Wnt , Animales , Ratas
14.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819456

RESUMEN

Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.


Asunto(s)
Proteínas de Drosophila , Proteínas de Homeodominio , Sistema Nervioso , Factores de Transcripción , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Sistema Nervioso/metabolismo , Sistema Nervioso/embriología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
15.
Nature ; 600(7887): 93-99, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34759317

RESUMEN

In most animals, the majority of the nervous system is generated and assembled into neuronal circuits during embryonic development1. However, during juvenile stages, nervous systems still undergo extensive anatomical and functional changes to eventually form a fully mature nervous system by the adult stage2,3. The molecular changes in post-mitotic neurons across post-embryonic development and the genetic programs that control these temporal transitions are not well understood4,5. Here, using the model system Caenorhabditis elegans, we comprehensively characterized the distinct functional states (locomotor behaviour) and the corresponding distinct molecular states (transcriptome) of the post-mitotic nervous system across temporal transitions during post-embryonic development. We observed pervasive, neuron-type-specific changes in gene expression, many of which are controlled by the developmental upregulation of the conserved heterochronic microRNA LIN-4 and the subsequent promotion of a mature neuronal transcriptional program through the repression of its target, the transcription factor lin-14. The functional relevance of these molecular transitions are exemplified by a temporally regulated target gene of the LIN-14 transcription factor, nlp-45, a neuropeptide-encoding gene, which we find is required for several distinct temporal transitions in exploratory activity during post-embryonic development. Our study provides insights into regulatory strategies that control neuron-type-specific gene batteries to modulate distinct behavioural states across temporal, sexual and environmental dimensions of post-embryonic development.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Mitosis , Sistema Nervioso/crecimiento & desarrollo , Neuronas/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Conducta Exploratoria , Femenino , Regulación del Desarrollo de la Expresión Génica , Locomoción/genética , Masculino , MicroARNs/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Neuropéptidos/genética , Proteínas Nucleares/genética , Factores de Tiempo , Transcriptoma
16.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37213081

RESUMEN

The most anterior structure of the ascidian larva is made of three palps with sensory and adhesive functions essential for metamorphosis. They derive from the anterior neural border and their formation is regulated by FGF and Wnt. Given that they also share gene expression profiles with vertebrate anterior neural tissue and cranial placodes, their study should shed light on the emergence of the unique vertebrate telencephalon. We show that BMP signaling regulates two phases of palp formation in Ciona intestinalis. During gastrulation, the anterior neural border is specified in a domain of inactive BMP signaling, and activating BMP prevented its formation. During neurulation, BMP defines ventral palp identity and indirectly specifies the inter-papilla territory separating the ventral and dorsal palps. Finally, we show that BMP has similar functions in the ascidian Phallusia mammillata, for which we identified novel palp markers. Collectively, we provide a better molecular description of palp formation in ascidians that will be instrumental for comparative studies.


Asunto(s)
Urocordados , Animales , Urocordados/genética , Sistema Nervioso/metabolismo , Transducción de Señal , Gastrulación/genética , Placa Neural/metabolismo , Regulación del Desarrollo de la Expresión Génica
17.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36595352

RESUMEN

Are there common mechanisms of neurogenesis used throughout an entire nervous system? We explored to what extent canonical proneural class I/II bHLH complexes are responsible for neurogenesis throughout the entire Caenorhabditis elegans nervous system. Distinct, lineage-specific proneural class II bHLH factors are generally thought to operate via interaction with a common, class I bHLH subunit, encoded by Daughterless in flies, the E proteins in vertebrates and HLH-2 in C. elegans. To eliminate function of all proneuronal class I/II bHLH complexes, we therefore genetically removed maternal and zygotic hlh-2 gene activity. We observed broad effects on neurogenesis, but still detected normal neurogenesis in many distinct neuron-producing lineages of the central and peripheral nervous system. Moreover, we found that hlh-2 selectively affects some aspects of neuron differentiation while leaving others unaffected. Although our studies confirm the function of proneuronal class I/II bHLH complexes in many different lineages throughout a nervous system, we conclude that their function is not universal, but rather restricted by lineage, cell type and components of differentiation programs affected.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Neurogénesis/genética , Regulación del Desarrollo de la Expresión Génica
18.
Cell ; 145(1): 117-32, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21458671

RESUMEN

Exchange of proteins at sorting endosomes is not only critical to numerous signaling pathways but also to receptor-mediated signaling and to pathogen entry into cells; however, how this process is regulated in synaptic vesicle cycling remains unexplored. In this work, we present evidence that loss of function of a single neuronally expressed GTPase activating protein (GAP), Skywalker (Sky) facilitates endosomal trafficking of synaptic vesicles at Drosophila neuromuscular junction boutons, chiefly by controlling Rab35 GTPase activity. Analyses of genetic interactions with the ESCRT machinery as well as chimeric ubiquitinated synaptic vesicle proteins indicate that endosomal trafficking facilitates the replacement of dysfunctional synaptic vesicle components. Consequently, sky mutants harbor a larger readily releasable pool of synaptic vesicles and show a dramatic increase in basal neurotransmitter release. Thus, the trafficking of vesicles via endosomes uncovered using sky mutants provides an elegant mechanism by which neurons may regulate synaptic vesicle rejuvenation and neurotransmitter release.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Mutación , Sistema Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Proteínas de Unión al GTP rab/genética
19.
Nature ; 584(7822): 595-601, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32814896

RESUMEN

It is not known at present whether neuronal cell-type diversity-defined by cell-type-specific anatomical, biophysical, functional and molecular signatures-can be reduced to relatively simple molecular descriptors of neuronal identity1. Here we show, through examination of the expression of all of the conserved homeodomain proteins encoded by the Caenorhabditis elegans genome2, that the complete set of 118 neuron classes of C. elegans can be described individually by unique combinations of the expression of homeodomain proteins, thereby providing-to our knowledge-the simplest currently known descriptor of neuronal diversity. Computational and genetic loss-of-function analyses corroborate the notion that homeodomain proteins not only provide unique descriptors of neuron type, but also have a critical role in specifying neuronal identity. We speculate that the pervasive use of homeobox genes in defining unique neuronal identities reflects the evolutionary history of neuronal cell-type specification.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Regulación de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Genoma/genética , Proteínas de Homeodominio/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Neuronas/citología
20.
Nature ; 587(7833): 281-284, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087932

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by a mutation or deletion of the maternally inherited UBE3A allele. In neurons, the paternally inherited UBE3A allele is silenced in cis by a long non-coding RNA called UBE3A-ATS. Here, as part of a systematic screen, we found that Cas9 can be used to activate ('unsilence') paternal Ube3a in cultured mouse and human neurons when targeted to Snord115 genes, which are small nucleolar RNAs that are clustered in the 3' region of Ube3a-ATS. A short Cas9 variant and guide RNA that target about 75 Snord115 genes were packaged into an adeno-associated virus and administered to a mouse model of AS during the embryonic and early postnatal stages, when the therapeutic benefit of restoring Ube3a is predicted to be greatest1,2. This early treatment unsilenced paternal Ube3a throughout the brain for at least 17 months and rescued anatomical and behavioural phenotypes in AS mice. Genomic integration of the adeno-associated virus vector into Cas9 target sites caused premature termination of Ube3a-ATS at the vector-derived polyA cassette, or when integrated in the reverse orientation, by transcriptional collision with the vector-derived Cas9 transcript. Our study shows that targeted genomic integration of a gene therapy vector can restore the function of paternally inherited UBE3A throughout life, providing a path towards a disease-modifying treatment for a syndromic neurodevelopmental disorder.


Asunto(s)
Síndrome de Angelman/genética , Síndrome de Angelman/terapia , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica , Terapia Genética/métodos , ARN Largo no Codificante/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Proteína 9 Asociada a CRISPR/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Silenciador del Gen , Vectores Genéticos/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Sistema Nervioso/metabolismo , Herencia Paterna/genética , Fenotipo , ARN Guía de Kinetoplastida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA