Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 913
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(13): 2823-2838.e20, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37236193

RESUMEN

Mental health profoundly impacts inflammatory responses in the body. This is particularly apparent in inflammatory bowel disease (IBD), in which psychological stress is associated with exacerbated disease flares. Here, we discover a critical role for the enteric nervous system (ENS) in mediating the aggravating effect of chronic stress on intestinal inflammation. We find that chronically elevated levels of glucocorticoids drive the generation of an inflammatory subset of enteric glia that promotes monocyte- and TNF-mediated inflammation via CSF1. Additionally, glucocorticoids cause transcriptional immaturity in enteric neurons, acetylcholine deficiency, and dysmotility via TGF-ß2. We verify the connection between the psychological state, intestinal inflammation, and dysmotility in three cohorts of IBD patients. Together, these findings offer a mechanistic explanation for the impact of the brain on peripheral inflammation, define the ENS as a relay between psychological stress and gut inflammation, and suggest that stress management could serve as a valuable component of IBD care.


Asunto(s)
Sistema Nervioso Entérico , Enfermedades Inflamatorias del Intestino , Humanos , Glucocorticoides/farmacología , Inflamación , Sistema Nervioso Entérico/fisiología , Estrés Psicológico
2.
Cell ; 176(1-2): 85-97.e14, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30580965

RESUMEN

Animals must respond to the ingestion of food by generating adaptive behaviors, but the role of gut-brain signaling in behavioral regulation is poorly understood. Here, we identify conserved ion channels in an enteric serotonergic neuron that mediate its responses to food ingestion and decipher how these responses drive changes in foraging behavior. We show that the C. elegans serotonergic neuron NSM acts as an enteric sensory neuron that acutely detects food ingestion. We identify the novel and conserved acid-sensing ion channels (ASICs) DEL-7 and DEL-3 as NSM-enriched channels required for feeding-dependent NSM activity, which in turn drives slow locomotion while animals feed. Point mutations that alter the DEL-7 channel change NSM dynamics and associated behavioral dynamics of the organism. This study provides causal links between food ingestion, molecular and physiological properties of an enteric serotonergic neuron, and adaptive feeding behaviors, yielding a new view of how enteric neurons control behavior.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Sistema Nervioso Entérico/metabolismo , Conducta Alimentaria/fisiología , Canales Iónicos Sensibles al Ácido/fisiología , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervioso Entérico/fisiología , Alimentos , Canales Iónicos/metabolismo , Canales Iónicos/fisiología , Locomoción , Neuronas/metabolismo , Células Receptoras Sensoriales/metabolismo , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/fisiología , Serotonina , Transducción de Señal
3.
Nature ; 618(7966): 818-826, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316669

RESUMEN

Correct development and maturation of the enteric nervous system (ENS) is critical for survival1. At birth, the ENS is immature and requires considerable refinement to exert its functions in adulthood2. Here we demonstrate that resident macrophages of the muscularis externa (MMϕ) refine the ENS early in life by pruning synapses and phagocytosing enteric neurons. Depletion of MMϕ before weaning disrupts this process and results in abnormal intestinal transit. After weaning, MMϕ continue to interact closely with the ENS and acquire a neurosupportive phenotype. The latter is instructed by transforming growth factor-ß produced by the ENS; depletion of the ENS and disruption of transforming growth factor-ß signalling result in a decrease in neuron-associated MMϕ associated with loss of enteric neurons and altered intestinal transit. These findings introduce a new reciprocal cell-cell communication responsible for maintenance of the ENS and indicate that the ENS, similarly to the brain, is shaped and maintained by a dedicated population of resident macrophages that adapts its phenotype and transcriptome to the timely needs of the ENS niche.


Asunto(s)
Sistema Nervioso Entérico , Intestinos , Macrófagos , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/crecimiento & desarrollo , Sistema Nervioso Entérico/fisiología , Intestinos/inervación , Linfotoxina-alfa/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiología , Neuronas/fisiología , Destete , Comunicación Celular , Transcriptoma , Fenotipo , Fagocitosis , Sinapsis , Plasticidad Neuronal , Tránsito Gastrointestinal
4.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35980364

RESUMEN

The gut has been a central subject of organogenesis since Caspar Friedrich Wolff's seminal 1769 work 'De Formatione Intestinorum'. Today, we are moving from a purely genetic understanding of cell specification to a model in which genetics codes for layers of physical-mechanical and electrical properties that drive organogenesis such that organ function and morphogenesis are deeply intertwined. This Review provides an up-to-date survey of the extrinsic and intrinsic mechanical forces acting on the embryonic vertebrate gut during development and of their role in all aspects of intestinal morphogenesis: enteric nervous system formation, epithelium structuring, muscle orientation and differentiation, anisotropic growth and the development of myogenic and neurogenic motility. I outline numerous implications of this biomechanical perspective in the etiology and treatment of pathologies, such as short bowel syndrome, dysmotility, interstitial cells of Cajal-related disorders and Hirschsprung disease.


Asunto(s)
Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Diferenciación Celular , Sistema Nervioso Entérico/fisiología , Humanos , Morfogénesis/genética , Organogénesis/fisiología
5.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G567-G582, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38193168

RESUMEN

The enteric nervous system (ENS) comprises millions of neurons and glia embedded in the wall of the gastrointestinal tract. It not only controls important functions of the gut but also interacts with the immune system, gut microbiota, and the gut-brain axis, thereby playing a key role in the health and disease of the whole organism. Any disturbance of this intricate system is mirrored in an alteration of electrical functionality, making electrophysiological methods important tools for investigating ENS-related disorders. Microelectrode arrays (MEAs) provide an appropriate noninvasive approach to recording signals from multiple neurons or whole networks simultaneously. However, studying isolated cells of the ENS can be challenging, considering the limited time that these cells can be kept vital in vitro. Therefore, we developed an alternative approach cultivating cells on glass samples with spacers (fabricated by photolithography methods). The spacers allow the cells to grow upside down in a spatially confined environment while enabling acute consecutive recordings of multiple ENS cultures on the same MEA. Upside-down culture also shows beneficial effects on the growth and behavior of enteric neural cultures. The number of dead cells was significantly decreased, and neural networks showed a higher resemblance to the myenteric plexus ex vivo while producing more stable signals than cultures grown in the conventional way. Overall, our results indicate that the upside-down approach not only allows to investigate the impact of neurological diseases in vitro but could also offer insights into the growth and development of the ENS under conditions much closer to the in vivo environment.NEW & NOTEWORTHY In this study, we devised a novel approach for culturing and electrophysiological recording of the enteric nervous system using custom-made glass substrates with spacers. This allows to turn cultures of isolated myenteric plexus upside down, enhancing the use of the microelectrode array technique by allowing recording of multiple cultures consecutively using only one chip. In addition, upside-down culture led to significant improvements in the culture conditions, resulting in a more in vivo-like growth.


Asunto(s)
Sistema Nervioso Entérico , Neuronas , Neuronas/fisiología , Sistema Nervioso Entérico/fisiología , Plexo Mientérico/fisiología , Plexo Submucoso
6.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G712-G725, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626403

RESUMEN

Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Tracto Gastrointestinal , Humanos , Animales , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Microbioma Gastrointestinal/fisiología , Neuroinmunomodulación/fisiología , Sistema Nervioso Entérico/fisiología , Sistema Nervioso Entérico/inmunología
7.
Biochem Biophys Res Commun ; 710: 149861, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38581949

RESUMEN

During early development, the enteric nervous system forms from the migration of enteric neural crest cells (ENCCs) from the foregut to the hindgut, where they undergo proliferation and differentiation facilitated by interactions with enteric mesenchymal cells (EMCs). This study investigates the impact on ENCC migration of EMC-ENCC communication mediated by GFRA1b expressed in EMCs. GFRA1-expressing cells in day 11-12 (E11-12) mouse embryos differentiated into smooth muscle cells from E12 onwards. Observations at E12-13.5 revealed high levels of GFRA1 expression on the anti-mesenteric side of the hindgut, correlating with enhanced ENCC migration. This indicates that GFRA1 in EMCs plays a role in ENCC migration during development. Examining GFRA1 isoforms, we found high levels of GFRA1b, which lacks amino acids 140-144, in EMCs. To assess the impact of GFRA1 isoforms on EMC-ENCC communication, we conducted neurosphere drop assays. This revealed that GFRA1b-expressing cells promoted GDNF-dependent extension and increased neurite density in ENCC neurospheres. Co-culture of ENCC mimetic cells expressing RET and GFRA1a with EMC mimetic cells expressing GFRA1a, GFRA1b, or vector alone showed that only GFRA1b-expressing co-cultured cells sustained RET phosphorylation in ENCC-mimetic cells for over 120 min upon GDNF stimulation. Our study provides evidence that GFRA1b-mediated cell-to-cell communication plays a critical role in ENCC motility in enteric nervous system development. These findings contribute to understanding the cellular interactions and signaling mechanisms that underlie enteric nervous system formation and highlight potential therapeutic targets for gastrointestinal motility disorders.


Asunto(s)
Sistema Nervioso Entérico , Cresta Neural , Animales , Ratones , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Sistema Nervioso Entérico/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Cresta Neural/metabolismo , Isoformas de Proteínas/metabolismo
8.
Development ; 148(2)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33376126

RESUMEN

The enteric nervous system (ENS), which is derived from neural crest, is essential for gut function, and its deficiency causes severe congenital diseases. Since the capacity for ENS regeneration in mammals is limited, additional complementary models would be useful. Here, we show that the ENS in zebrafish larvae at 10-15 days postfertilization is highly regenerative. After laser ablation, the number of enteric neurons recovered to ∼50% of the control by 10 days post-ablation (dpa). Using transgenic lines in which enteric neural crest-derived cells (ENCDCs) and enteric neurons are labeled with fluorescent proteins, we live imaged the regeneration process and found covering by neurites that extended from the unablated area and entry of ENCDCs into the ablated areas by 1-3 dpa. BrdU assays suggested that ∼80% of the enteric neurons and ∼90% of the Sox10-positive ENCDCs therein at 7 dpa were generated through proliferation. Thus, ENS regeneration involves proliferation, entrance and neurogenesis of ENCDCs. This is the first report regarding the regeneration process of the zebrafish ENS. Our findings provide a basis for further in vivo research at single-cell resolution in this vertebrate model.


Asunto(s)
Movimiento Celular , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/fisiología , Regeneración Nerviosa , Cresta Neural/citología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Proliferación Celular , Proteínas Fluorescentes Verdes/metabolismo , Intestinos/inervación , Larva , Neuritas/metabolismo , Neurogénesis , Factores de Tiempo
9.
Development ; 148(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758081

RESUMEN

The developmental programs that build and sustain animal forms also encode the capacity to sense and adapt to the microbial world within which they evolved. This is abundantly apparent in the development of the digestive tract, which typically harbors the densest microbial communities of the body. Here, we review studies in human, mouse, zebrafish and Drosophila that are revealing how the microbiota impacts the development of the gut and its communication with the nervous system, highlighting important implications for human and animal health.


Asunto(s)
Eje Cerebro-Intestino/fisiología , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/crecimiento & desarrollo , Animales , Linaje de la Célula , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/crecimiento & desarrollo , Sistema Nervioso Entérico/fisiología , Motilidad Gastrointestinal , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/microbiología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/crecimiento & desarrollo , Neuronas/citología , Neuronas/fisiología
10.
PLoS Pathog ; 18(2): e1009989, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143593

RESUMEN

The enteric nervous system (ENS) controls many aspects of intestinal homeostasis, including parameters that shape the habitat of microbial residents. Previously we showed that zebrafish lacking an ENS, due to deficiency of the sox10 gene, develop intestinal inflammation and bacterial dysbiosis, with an expansion of proinflammatory Vibrio strains. To understand the primary defects resulting in dysbiosis in sox10 mutants, we investigated how the ENS shapes the intestinal environment in the absence of microbiota and associated inflammatory responses. We found that intestinal transit, intestinal permeability, and luminal pH regulation are all aberrant in sox10 mutants, independent of microbially induced inflammation. Treatment with the proton pump inhibitor, omeprazole, corrected the more acidic luminal pH of sox10 mutants to wild type levels. Omeprazole treatment also prevented overabundance of Vibrio and ameliorated inflammation in sox10 mutant intestines. Treatment with the carbonic anhydrase inhibitor, acetazolamide, caused wild type luminal pH to become more acidic, and increased both Vibrio abundance and intestinal inflammation. We conclude that a primary function of the ENS is to regulate luminal pH, which plays a critical role in shaping the resident microbial community and regulating intestinal inflammation.


Asunto(s)
Sistema Nervioso Entérico/fisiología , Intestinos/microbiología , Fenobarbital/metabolismo , Factores de Transcripción SOXE/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Disbiosis/microbiología , Microbioma Gastrointestinal , Homeostasis , Concentración de Iones de Hidrógeno , Inflamación , Mutación
11.
Biochem Soc Trans ; 52(1): 177-190, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38174765

RESUMEN

The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research.


Asunto(s)
Sistema Nervioso Entérico , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Sistema Nervioso Entérico/fisiología , Neuronas , Neurogénesis/genética , Regulación del Desarrollo de la Expresión Génica
12.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593632

RESUMEN

Glia in the central nervous system exert precise spatial and temporal regulation over neural circuitry on a synapse-specific basis, but it is unclear if peripheral glia share this exquisite capacity to sense and modulate circuit activity. In the enteric nervous system (ENS), glia control gastrointestinal motility through bidirectional communication with surrounding neurons. We combined glial chemogenetics with genetically encoded calcium indicators expressed in enteric neurons and glia to study network-level activity in the intact myenteric plexus of the proximal colon. Stimulation of neural fiber tracts projecting in aboral, oral, and circumferential directions activated distinct populations of enteric glia. The majority of glia responded to both oral and aboral stimulation and circumferential pathways, while smaller subpopulations were activated only by ascending and descending pathways. Cholinergic signaling functionally specifies glia to the descending circuitry, and this network plays an important role in repressing the activity of descending neural pathways, with some degree of cross-inhibition imposed upon the ascending pathway. Glial recruitment by purinergic signaling functions to enhance activity within ascending circuit pathways and constrain activity within descending networks. Pharmacological manipulation of glial purinergic and cholinergic signaling differentially altered neuronal responses in these circuits in a sex-dependent manner. Collectively, our findings establish that the balance between purinergic and cholinergic signaling may differentially control specific circuit activity through selective signaling between networks of enteric neurons and glia. Thus, enteric glia regulate the ENS circuitry in a network-specific manner, providing profound insights into the functional breadth and versatility of peripheral glia.


Asunto(s)
Sistema Nervioso Entérico/fisiología , Motilidad Gastrointestinal/fisiología , Plexo Mientérico/fisiología , Neuroglía/fisiología , Animales , Comunicación Celular , Sistema Nervioso Entérico/citología , Femenino , Masculino , Ratones , Plexo Mientérico/citología , Neuroglía/citología , Neuronas/citología , Transducción de Señal
13.
J Physiol ; 601(7): 1183-1206, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36752210

RESUMEN

The enteric nervous system (ENS) regulates the motor, secretory and defensive functions of the gastrointestinal tract. Enteric neurons integrate mechanical and chemical inputs from the gut lumen to generate complex motor outputs. How intact enteric neural circuits respond to changes in the gut lumen is not well understood. We recorded intracellular calcium in live-cell confocal recordings in neurons from intact segments of mouse intestine in order to investigate neuronal response to luminal mechanical and chemical stimuli. Wnt1-, ChAT- and Calb1-GCaMP6 mice were used to record neurons from the jejunum and colon. We measured neuronal calcium response to KCl (75 mM), veratridine (10 µM), 1,1-dimethyl-4-phenylpiperazinium (DMPP; 100 µM) or luminal nutrients (Ensure®), in the presence or absence of intraluminal distension. In the jejunum and colon, distension generated by the presence of luminal content (chyme and faecal pellets, respectively) renders the underlying enteric circuit unresponsive to depolarizing stimuli. In the distal colon, high levels of distension inhibit neuronal response to KCl, while intermediate levels of distension reorganize Ca2+ response in circumferentially propagating slow waves. Mechanosensitive channel inhibition suppresses distension-induced Ca2+ elevations, and calcium-activated potassium channel inhibition restores neuronal response to KCl, but not DMPP in the distended colon. In the jejunum, distension prevents a previously unknown tetrodotoxin-resistant neuronal response to luminal nutrient stimulation. Our results demonstrate that intestinal distension regulates the excitability of ENS circuits via mechanosensitive channels. Physiological levels of distension locally silence or synchronize neurons, dynamically regulating the excitability of enteric neural circuits based on the content of the intestinal lumen. KEY POINTS: How the enteric nervous system of the gastrointestinal tract responds to luminal distension remains to be fully elucidated. Here it is shown that intestinal distension modifies intracellular calcium levels in the underlying enteric neuronal network, locally and reversibly silencing neurons in the distended regions. In the distal colon, luminal distension is integrated by specific mechanosensitive channels and coordinates the dynamics of neuronal activation within the enteric network. In the jejunum, distension suppresses the neuronal calcium responses induced by luminal nutrients. Physiological levels of distension dynamically regulate the excitability of enteric neuronal circuits.


Asunto(s)
Calcio , Sistema Nervioso Entérico , Ratones , Animales , Sistema Nervioso Entérico/fisiología , Neuronas/fisiología , Intestino Delgado , Yeyuno , Colon/fisiología , Plexo Mientérico
14.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G196-G206, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625480

RESUMEN

The enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal tract (GI) and regulates important GI functions, including motility, nutrient uptake, and immune response. The development of the ENS begins during early organogenesis and continues to develop once feeding begins, with ongoing plasticity into adulthood. There has been increasing recognition that the intestinal microbiota and ENS interact during critical periods, with implications for normal development and potential disease pathogenesis. In this review, we focus on insights from mouse and zebrafish model systems to compare and contrast how each model can serve in elucidating the bidirectional communication between the ENS and the microbiome. At the end of this review, we further outline implications for human disease and highlight research innovations that can lead the field forward.


Asunto(s)
Sistema Nervioso Entérico , Microbioma Gastrointestinal , Microbiota , Humanos , Ratones , Animales , Pez Cebra , Sistema Nervioso Entérico/fisiología , Tracto Gastrointestinal , Microbioma Gastrointestinal/fisiología
15.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G93-G108, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37253656

RESUMEN

Coronavirus disease 2019 (COVID-19) has been demonstrated to affect several systems of the human body, including the gastrointestinal and nervous systems. The enteric nervous system (ENS) is a division of the autonomic nervous system that extends throughout the gut, regulates gastrointestinal function, and is therefore involved in most gut dysfunctions, including those resulting from many viral infections. Growing evidence highlights enteric neural cells and microbiota as important players in gut inflammation and dysfunction. Furthermore, the ENS and gastrointestinal immune system work together establishing relevant neuroimmune interactions during both health and disease. In recent years, gut-driven processes have also been implicated as players in systemic inflammation and in the initiation and propagation of several central nervous system pathologies, which seem to be hallmarks of COVID-19. In this review, we aim to describe evidence of the gastrointestinal and ENS infection with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss here viral-induced mechanisms, neuroplasticity, and neuroinflammation to call attention to the enteric neuroglial network as a nervous system with a sensitive and crucial position to be not only a target of the new coronavirus but also a way in and trigger of COVID-19-related symptoms.


Asunto(s)
COVID-19 , Sistema Nervioso Entérico , Humanos , SARS-CoV-2 , Sistema Nervioso Entérico/fisiología , Tracto Gastrointestinal/fisiología , Inflamación
16.
Am J Physiol Gastrointest Liver Physiol ; 324(2): G115-G130, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511517

RESUMEN

Proteolipid protein 1 (Plp1) is highly expressed in enteric glia, labeling cells throughout the mucosa, muscularis, and the extrinsic innervation. Plp1 is a major constituent of myelin in the central and peripheral nervous systems, but the absence of myelin in the enteric nervous system (ENS) suggests another role for Plp1 in the gut. Although the functions of enteric glia are still being established, there is strong evidence that they regulate intestinal motility and permeability. To interrogate the role of Plp1 in enteric glia, we investigated gut motility, secretomotor function and permeability, and evaluated the ENS in mice lacking Plp1. We studied two time points: ∼3 mo (young) and >1 yr (old). Old Plp1 null mice exhibited increased fecal output, decreased fecal water content, faster whole gut transit times, reduced intestinal permeability, and faster colonic migrating motor complexes. Interestingly, in both young and old mice, the ENS exhibited normal glial and neuronal numbers as well as glial arborization density in the absence of Plp1. As Plp1-associated functions involve mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (Mapk/Erk1/2) signaling and Mapk/Erk1/2 are reported to have a regulatory role in intestinal motility, we measured protein expression of Erk1/2 and its active form in the small intestine. Old Plp1 null mice had reduced levels of phosphorylated-Erk1/2. Although Plp1 is not required for the normal appearance of enteric glial cells, it has a regulatory role in intestinal motility and barrier function. Our results suggest that functional changes mediated by Plp1-expressing enteric glia may involve Erk1/2 activation.NEW & NOTEWORTHY Here, we describe that Plp1 regulates gut motility and barrier function. The functional effects of Plp1 eradication are only seen in old mice, not young. The effects of Plp1 appear to be mediated through the Erk1/2 pathway.


Asunto(s)
Motilidad Gastrointestinal , Mucosa Intestinal , Proteína Proteolipídica de la Mielina , Animales , Ratones , Sistema Nervioso Entérico/fisiología , Motilidad Gastrointestinal/fisiología , Ratones Noqueados , Neuroglía/metabolismo , Neuronas/metabolismo , Proteolípidos/metabolismo , Proteolípidos/farmacología , Proteína Proteolipídica de la Mielina/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiología
17.
Neuroendocrinology ; 113(3): 289-303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35952633

RESUMEN

INTRODUCTION: Calcium-sensitive receptor (CaSR) is expressed in the enteric nervous system of gastrointestinal tract. However, its role in the regulation of gastrointestinal motility has not yet been fully elucidated. We aimed to investigate the effect of the CaSR agonist - R568 on gastric motility and its potential mechanism. METHODS: In vivo, R568 was given by gavage to explore gastric emptying with or without capsaicin which specifically blocks the function of vagal afferents; neurotransmitters synthetized in the myenteric plexus of the gastric corpus and antrum were analysed by ELISA and immunofluorescence staining; gastric muscle strips contraction recording and intracellular single unit firing recording were used to study the effect of R568 on muscle strips and myenteric interstitial cells of Cajal (ICCs) ex vitro. RESULTS: Gastric emptying was inhibited by R568 in Kunming male mice, and capsaicin weakened this effect. The expression of c-fos-positive neurons increased in the nucleus tractus solitarius when R568 was treated. R568 decreased the expression of cholinergic neurons and reduced the synthesis of acetylcholine. Conversely, R568 increased the expression of nitrogenic neurons and enhanced the synthesis of nitric oxide in the myenteric plexus. Ex vitro results showed that R568 inhibited the contraction of the gastric antral muscle strip and suppressed the spontaneous firing activity of pacemaker ICCs. CONCLUSION: Activation of the gastrointestinal CaSR inhibited gastric motility in vivo and ex vitro. Transmitting nutrient signals to the brain through the vagal afferent nerve, modulating the cholinergic and nitrergic system in the enteric nervous system, and inhibiting activity of pacemaker ICCs in the myenteric plexus are involved in the mechanism of CaSR in gastric motility suppression.


Asunto(s)
Calcio , Sistema Nervioso Entérico , Ratones , Animales , Masculino , Calcio/metabolismo , Calcio/farmacología , Capsaicina/farmacología , Capsaicina/metabolismo , Sistema Nervioso Entérico/fisiología , Plexo Mientérico/metabolismo , Motilidad Gastrointestinal/fisiología
18.
Semin Neurol ; 43(4): 495-505, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37562453

RESUMEN

Propulsion of contents in the gastrointestinal tract requires coordinated functions of the extrinsic nerves to the gut from the brain and spinal cord, as well as the neuromuscular apparatus within the gut. The latter includes excitatory and inhibitory neurons, pacemaker cells such as the interstitial cells of Cajal and fibroblast-like cells, and smooth muscle cells. Coordination between these extrinsic and enteric neurons results in propulsive functions which include peristaltic reflexes, migrating motor complexes in the small intestine which serve as the housekeeper propelling to the colon the residual content after digestion, and mass movements in the colon which lead to defecation.


Asunto(s)
Sistema Nervioso Entérico , Humanos , Sistema Nervioso Entérico/fisiología , Colon/inervación , Colon/fisiología , Neuronas
19.
J Med Genet ; 59(2): 105-114, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34667088

RESUMEN

SOX10 belongs to a family of 20 SRY (sex-determining region Y)-related high mobility group box-containing (SOX) proteins, most of which contribute to cell type specification and differentiation of various lineages. The first clue that SOX10 is essential for development, especially in the neural crest, came with the discovery that heterozygous mutations occurring within and around SOX10 cause Waardenburg syndrome type 4. Since then, heterozygous mutations have been reported in Waardenburg syndrome type 2 (Waardenburg syndrome type without Hirschsprung disease), PCWH or PCW (peripheral demyelinating neuropathy, central dysmyelination, Waardenburg syndrome, with or without Hirschsprung disease), intestinal manifestations beyond Hirschsprung (ie, chronic intestinal pseudo-obstruction), Kallmann syndrome and cancer. All of these diseases are consistent with the regulatory role of SOX10 in various neural crest derivatives (melanocytes, the enteric nervous system, Schwann cells and olfactory ensheathing cells) and extraneural crest tissues (inner ear, oligodendrocytes). The recent evolution of medical practice in constitutional genetics has led to the identification of SOX10 variants in atypical contexts, such as isolated hearing loss or neurodevelopmental disorders, making them more difficult to classify in the absence of both a typical phenotype and specific expertise. Here, we report novel mutations and review those that have already been published and their functional consequences, along with current understanding of SOX10 function in the affected cell types identified through in vivo and in vitro models. We also discuss research options to increase our understanding of the origin of the observed phenotypic variability and improve the diagnosis and medical care of affected patients.


Asunto(s)
Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/fisiología , Animales , Sistema Nervioso Entérico/fisiología , Regulación del Desarrollo de la Expresión Génica , Pérdida Auditiva/genética , Enfermedad de Hirschsprung/genética , Humanos , Síndrome de Kallmann/genética , Melanocitos/fisiología , Mutación , Neoplasias/genética , Cresta Neural/embriología , Cresta Neural/fisiología , Fenotipo , Síndrome de Waardenburg/genética
20.
Annu Rev Physiol ; 81: 235-259, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30379617

RESUMEN

At the most fundamental level, the bowel facilitates absorption of small molecules, regulates fluid and electrolyte flux, and eliminates waste. To successfully coordinate this complex array of functions, the bowel relies on the enteric nervous system (ENS), an intricate network of more than 500 million neurons and supporting glia that are organized into distinct layers or plexi within the bowel wall. Neuron and glial diversity, as well as neurotransmitter and receptor expression in the ENS, resembles that of the central nervous system. The most carefully studied ENS functions include control of bowel motility, epithelial secretion, and blood flow, but the ENS also interacts with enteroendocrine cells, influences epithelial proliferation and repair, modulates the intestinal immune system, and mediates extrinsic nerve input. Here, we review the many different cell types that communicate with the ENS, integrating data about ENS function into a broader view of human health and disease. In particular, we focus on exciting new literature highlighting relationships between the ENS and its lesser-known interacting partners.


Asunto(s)
Encéfalo/fisiología , Sistema Nervioso Entérico/fisiología , Tracto Gastrointestinal/fisiología , Animales , Motilidad Gastrointestinal/fisiología , Humanos , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA