Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.777
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 233, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561647

RESUMEN

BACKGROUND: The study focuses on the global challenge of drought stress, which significantly impedes wheat production, a cornerstone of global food security. Drought stress disrupts cellular and physiological processes in wheat, leading to substantial yield losses, especially in arid and semi-arid regions. The research investigates the use of Spirulina platensis aqueous extract (SPAE) as a biostimulant to enhance the drought resistance of two Egyptian wheat cultivars, Sakha 95 (drought-tolerant) and Shandawel 1 (drought-sensitive). Each cultivar's grains were divided into four treatments: Cont, DS, SPAE-Cont, and SPAE + DS. Cont and DS grains were presoaked in distilled water for 18 h while SPAE-Cont and SPAE + DS were presoaked in 10% SPAE, and then all treatments were cultivated for 96 days in a semi-field experiment. During the heading stage (45 days: 66 days), two drought treatments, DS and SPAE + DS, were not irrigated. In contrast, the Cont and SPAE-Cont treatments were irrigated during the entire experiment period. At the end of the heading stage, agronomy, pigment fractions, gas exchange, and carbohydrate content parameters of the flag leaf were assessed. Also, at the harvest stage, yield attributes and biochemical aspects of yielded grains (total carbohydrates and proteins) were evaluated. RESULTS: The study demonstrated that SPAE treatments significantly enhanced the growth vigor, photosynthetic rate, and yield components of both wheat cultivars under standard and drought conditions. Specifically, SPAE treatments increased photosynthetic rate by up to 53.4%, number of spikes by 76.5%, and economic yield by 190% for the control and 153% for the drought-stressed cultivars pre-soaked in SPAE. Leaf agronomy, pigment fractions, gas exchange parameters, and carbohydrate content were positively influenced by SPAE treatments, suggesting their effectiveness in mitigating drought adverse effects, and improving wheat crop performance. CONCLUSION: The application of S. platensis aqueous extract appears to ameliorate the adverse effects of drought stress on wheat, enhancing the growth vigor, metabolism, and productivity of the cultivars studied. This indicates the potential of SPAE as an eco-friendly biostimulant for improving crop resilience, nutrition, and yield under various environmental challenges, thus contributing to global food security.


Asunto(s)
Sequías , Spirulina , Triticum , Carbohidratos , Grano Comestible/metabolismo , Triticum/metabolismo , Agua/metabolismo
2.
BMC Plant Biol ; 24(1): 906, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350034

RESUMEN

BACKGROUND: The Mexican lime (Citrus aurantifolia cv.), widely consumed in Iran and globally, is known for its high perishability. Edible coatings have emerged as a popular method to extend the shelf life of fruits, with xanthan gum-based coatings being particularly favored for their environmental benefits. This study aims to evaluate the effectiveness of an edible coating formulated from xanthan gum, enriched with Spirulina platensis (Sp) and pomegranate seed oil (PSO), in improving the quality and reducing the weight loss of Mexican lime fruit under conditions of 20 ± 2 °C and 50-60% relative humidity. RESULTS: Based on the results, the application of coatings was generally effective in reducing fruit weight loss, with the least weight loss observed in the xanthan gum 0.2%+ Spirulina platensis extract (1%) treatment. Additionally, the levels of total phenols and flavonoids in the treated fruits exceeded those in the control group, with xanthan gum 0.2%+ Spirulina platensis extract (1%) and xanthan gum 0.2% exhibiting the highest concentrations of these compounds. The antioxidant capacity of the fruits was also enhanced by the coatings, surpassing that of the control group, with xanthan gum 0.2%+ Spirulina platensis extract (1%) achieving the highest levels. The treatments significantly suppressed the activity of the polyphenol oxidase (PPO) enzyme, with xanthan gum 0.2% demonstrating the most potent inhibitory effect. Furthermore, the treatments resulted in increased activities of catalase (CAT) and peroxidase (POD) enzymes compared to the control. Except for xanthan gum 0.2%+ pomegranate seed oil (0.05%), all treatments maintained the fruit's greenness (a*) more effectively than the control. CONCLUSIONS: Peel browning is a major factor contributing to the decline in quality and shelf life of lime fruit. The application of 0.1% and 0.2% xanthan gum coatings, as well as a combination of 0.2% xanthan gum and Spirulina platensis extract, significantly inhibited PPO activity and enhanced the activity of CAT and POD and phenolic compound in Mexican lime fruits stored at of 20 ± 2 °C for 24 days. Consequently, these treatments comprehensively preserved lime fruit quality by significantly reducing browning, maintaining green color, and preserving internal quality parameters such as TA, thereby enhancing both visual appeal and overall fruit quality.


Asunto(s)
Aceites de Plantas , Polisacáridos Bacterianos , Granada (Fruta) , Semillas , Spirulina , Spirulina/química , Aceites de Plantas/farmacología , Granada (Fruta)/química , Semillas/química , Frutas/química , Citrus aurantiifolia , Conservación de Alimentos/métodos , Almacenamiento de Alimentos , Antioxidantes
3.
BMC Plant Biol ; 24(1): 512, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849727

RESUMEN

BACKGROUND: This study investigates a novel idea about the foliar application of nanoparticles as nanofertilizer combined with a natural stimulant, blue-green algae Spirulina platensis L. extract, as a bio-fertilizer to achieve safety from using nanoparticles for enhancement of the growth and production of the plant. Thus, this experiment aimed to chemically synthesize copper nanoparticles via copper sulfate in addition to evaluate the impact of CuNPs at 500, 1000, and 1500 mg/L and the combination of CuNPs with or without microalgae extract at 0.5, 1, and 1.5 g/L on the morphological parameters, photosynthetic pigments accumulation, essential oil production, and antioxidant activity of French basil. RESULTS: The results revealed that foliar application of CuNPs and its interaction with spirulina extract significantly increased growth and yield compared with control, the treatments of 1000 and 1500 mg/L had less impact than 500 mg/L CuNPs. Plants treated with 500 mg/L CuNPs and 1.5 g/L spirulina extract showed the best growth and oil production, as well as the highest accumulation of chlorophylls and carotenoids. The application of CuNPs nanofertilizer caused a significant increase in the antioxidant activity of the French basil plant, but the combination of CuNPs with spirulina extract caused a decrease in antioxidant activity. CONCULOSION: Therefore, foliar application of natural bio-fertilizer with CuNPsis necessary for obtaining the best growth and highest oil production from the French basil plant with the least damage to the plant and the environment.


Asunto(s)
Cobre , Nanopartículas del Metal , Ocimum basilicum , Spirulina , Spirulina/metabolismo , Spirulina/efectos de los fármacos , Spirulina/crecimiento & desarrollo , Ocimum basilicum/efectos de los fármacos , Ocimum basilicum/crecimiento & desarrollo , Ocimum basilicum/metabolismo , Antioxidantes/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Fertilizantes , Clorofila/metabolismo , Fotosíntesis/efectos de los fármacos , Aceites Volátiles/farmacología
4.
Photosynth Res ; 161(1-2): 93-103, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38224422

RESUMEN

C-phycocyanin (C-PC) is the main component of water-soluble light-harvesting complexes (phycobilisomes, PBS) of cyanobacteria. PBS are involved in the absorption of quantum energy and the transfer of electronic excitation energy to the photosystems. A specific environment of C-PC chromophoric groups is provided by the protein matrix structure including protein-protein contacts between different subunits. Registration of C-PC spectral characteristics and the fluorescence anisotropy decay have revealed a significant pH influence on the chromophore microenvironment: at pH 5.0, a chromophore is more significantly interacts with the solvent, whereas at pH 9.0 the chromophore microenvironment becomes more viscous. Conformations of chromophores and the C-PC protein matrix have been studied by Raman and infrared spectroscopy. A decrease in the medium pH results in changes in the secondary structure either the C-PC apoproteins and chromophores, the last one adopts a more folded conformation.


Asunto(s)
Proteínas Bacterianas , Complejos de Proteína Captadores de Luz , Ficocianina , Spirulina , Ficocianina/química , Concentración de Iones de Hidrógeno , Polarización de Fluorescencia , Espectrometría Raman , Espectrofotometría Infrarroja , Estructura Secundaria de Proteína , Complejos de Proteína Captadores de Luz/química , Pliegue de Proteína , Spirulina/enzimología , Proteínas Bacterianas/química
5.
Microb Pathog ; 190: 106641, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588925

RESUMEN

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Asunto(s)
Adyuvantes Inmunológicos , Antioxidantes , Bivalvos , Kéfir , Probióticos , Superóxido Dismutasa , Vibrio alginolyticus , Animales , Probióticos/farmacología , Bivalvos/química , Bivalvos/microbiología , Antioxidantes/metabolismo , Kéfir/microbiología , Superóxido Dismutasa/metabolismo , Spirulina/química , Malondialdehído/metabolismo , Malondialdehído/análisis , Alimentación Animal , Monofenol Monooxigenasa/metabolismo , Suplementos Dietéticos , Fosfatasa Alcalina/metabolismo , Muramidasa/metabolismo , Vibriosis/prevención & control
6.
Arch Microbiol ; 206(6): 258, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735006

RESUMEN

Phycocyanin, a blue-coloured pigment, predominantly found and derived from Spirulina sp., has gained researchers' interest due to its vibrant hues and other attractive properties like antioxidant and anti-microbial. However, the lack of reliable and sustainable phycocyanin extraction strategies without compromising the quality has hindered the scaling up of its production processes for commercial purposes. Here in this study, phycocyanin was extracted from wet and dry biomass Spirulina sp., using three different physical cell disruption methods (ultrasonication, homogenization, and freeze-thaw cycles) combined with two different buffers (phosphate buffer and acetate buffer) and water (as control). The result showed that the freeze-thaw method combined with acetate buffer produced the highest yield (25.013 ± 2.572 mg/100 mg) with a purity ratio of 0.806 ± 0.079. Furthermore, when subjected to 30% w/v salt stress, 1.9 times higher phycocyanin yield with a purity ratio of 1.402 ± 0.609 was achieved using the previously optimized extraction method.


Asunto(s)
Ficocianina , Estrés Salino , Spirulina , Ficocianina/metabolismo , Ficocianina/aislamiento & purificación , Spirulina/metabolismo , Spirulina/química , Biomasa , Congelación
7.
Protein Expr Purif ; 216: 106417, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38110108

RESUMEN

The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and nicotinamide adenine dinucleotide phosphate (NADPH). Spirulina platensis, which is one of the blue-green algae in the form of spiral rings, belongs to the cyanobacteria class. Spirulina platensis can produce Trx under stress conditions. If it can produce Trx, it also has TrxR activity. Therefore, in this study, the TrxR enzyme was purified for the first time from Spirulina platensis, an algae the most grown and also used as a nutritional supplement in the world. A two-step purification process was used: preparation of the homogenate and 2',5'-ADP sepharose 4B affinity chromatography. The enzyme was purified with a purification fold of 1059.51, a recovery yield of 9.7 %, and a specific activity of 5.77 U/mg protein. The purified TrxR was tested for purity by SDS-PAGE. The molecular weight of its subunit was found to be about 45 kDa. Optimum pH, temperature and ionic strength of the enzyme were pH 7.0, 40 °C and 750 mM in phosphate buffer respectively. The Michaelis constant (Km) and maximum velocity of enzyme (Vmax) values for NADPH and 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) are 5 µM and 2.2 mM, and 0.0033 U/mL and 0.0044 U/mL, respectively. Storage stability of the purified enzyme was determined at several temperatures. The inhibition effects of Ag+, Cu2+, Al3+ and Se4+ metal ions on the purified TrxR activity were investigated in vitro. While Se4+ ion increased the enzyme activity, other tested metal ions showed different type of inhibitory effects on the Lineweaver-Burk graphs.


Asunto(s)
Antioxidantes , Spirulina , Reductasa de Tiorredoxina-Disulfuro , NADP/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Cromatografía de Afinidad , Tiorredoxinas/química , Iones , Cinética
8.
Microb Cell Fact ; 23(1): 92, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539154

RESUMEN

Excessive consumption of antibiotics is considered one of the top public health threats, this necessitates the development of new compounds that can hamper the spread of infections. A facile green technology for the biosynthesis of Zinc oxide nanoparticles (ZnO NPs) using the methanol extract of Spirulina platensis as a reducing and stabilizing agent has been developed. A bunch of spectroscopic and microscopic investigations confirmed the biogenic generation of nano-scaled ZnO with a mean size of 19.103 ± 5.66 nm. The prepared ZnO NPs were scrutinized for their antibacterial and antibiofilm potentiality, the inhibition zone diameters ranged from 12.57 ± 0.006 mm to 17.33 ± 0.006 mm (at 20 µg/mL) for a variety of Gram-positive and Gram-negative pathogens, also significant eradication of the biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae by 96.7% and 94.8% respectively was detected. The free radical scavenging test showed a promising antioxidant capacity of the biogenic ZnO NPs (IC50=78.35 µg/mL). Furthermore, the anti-inflammatory role detected using the HRBCs-MSM technique revealed an efficient stabilization of red blood cells in a concentration-dependent manner. In addition, the biogenic ZnO NPs have significant anticoagulant and antitumor activities as well as minimal cytotoxicity against Vero cells. Thus, this study offered green ZnO NPs that can act as a secure substitute for synthetic antimicrobials and could be applied in numerous biomedical applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Spirulina , Óxido de Zinc , Animales , Chlorocebus aethiops , Óxido de Zinc/farmacología , Óxido de Zinc/química , Células Vero , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
Br J Nutr ; 131(9): 1540-1553, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38220222

RESUMEN

Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l-1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l-1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l-1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.


Asunto(s)
Aminoácidos , Estudios Cruzados , Proteínas en la Dieta , Insulina , Periodo Posprandial , Spirulina , Humanos , Masculino , Femenino , Anciano , Adulto Joven , Aminoácidos/sangre , Proteínas en la Dieta/administración & dosificación , Método Doble Ciego , Insulina/sangre , Aminoácidos Esenciales/sangre , Aminoácidos Esenciales/administración & dosificación , Chlorella , Glucemia/metabolismo , Glucemia/análisis , Adulto , Animales , Proteínas de Vegetales Comestibles/administración & dosificación , Pisum sativum/química , Proteínas de Guisantes/sangre , Leche/química , Proteínas de la Leche/administración & dosificación , Factores de Edad
10.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 82-89, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39262257

RESUMEN

Oxidative stress caused by hyperglycemia can lead to the intensification of hyperglycemia and an increased risk of diabetes complications. Spirulina platensis is a potent free-radical scavenger; it has the potential to be used as a substrate for fermentation by lactic acid bacteria. This study aimed to formulate two functional foods with antioxidant capacity (yogurt containing S. platensis powder / fermented S. platensis powder) for Type 2 Diabetes Mellitus (T2DM) patients and compare the antioxidant effects in diabetic subjects. In this article, for the first time, the antioxidant effect of fermented and non-fermented Spirulina was compared in a clinical study in 'T2DM' patients. By blood sampling, clinical parameters such as FBS, GSH, FRAP, MDA, and CRP before and after each treatment were measured and results were compared between two groups of intervention. Both products as functional foods have a positive effect on the health of diabetic patients by reducing FBS and increasing total antioxidant capacity, and this positive effect is more obvious when yogurt contains fermented lactic acid S. platensis is consumed by T2DM patients.


Asunto(s)
Antioxidantes , Diabetes Mellitus Tipo 2 , Fermentación , Estrés Oxidativo , Spirulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/metabolismo , Persona de Mediana Edad , Masculino , Femenino , Yogur/microbiología , Glucemia/metabolismo
11.
Environ Res ; 251(Pt 1): 118622, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38442816

RESUMEN

Bioplastics have been used as alternatives to conventional petroleum-based plastics to lessen the burdens on marine and terrestrial environments due to their non-biodegradability and toxicity. However, recent studies have shown that not all bioplastics may be environmentally friendly. Microalgae, such as Spirulina that do not require arable land, have been identified as a potential bioplastic source. In this study, cradle-to-gate life cycle assessment (LCA) was carried out in openLCA program using the Agribalyse database, to evaluate the environmental impacts of Spirulina bioplastic, formed from plasticization of Spirulina powder with glycerol. Two processes were created for the inventories of (i) Spirulina powder and (ii) Spirulina bioplastic, where the output of the former served as an input for the latter. The extruded bioplastic sheets were food-grade and could be used as edible packaging materials. The bioplastic was also compared to conventional plastics and it was found that the energy consumption was 3.83 ± 0.26 MJ/kg-bioplastic, which was 12% and 22% higher than that of LDPE and PVC plastic films, respectively. The impacts on the environment showed that the chemical growth medium (Zarrouk medium) and electricity were the main contributors in most of the categories. Compared to the PVC and LDPE films, the Spirulina bioplastic's impacts on the aquatic ecosystems were 2-3 times higher. The global warming potential of the Spirulina bioplastic was 1.99 ± 0.014 kg CO2 eq, which was 23% and 47% lower than that of LDPE and PVC films, respectively. Sensitivity analysis was carried out by changing the electricity source and using alternative growth media. Except for the case of switching to solar energy, the results for other cases did not differ significantly from the base case scenario. Future studies were suggested to identify different greener alternatives to the growth medium as well as different energy mixes for more environmentally benign solutions.


Asunto(s)
Glicerol , Spirulina , Spirulina/crecimiento & desarrollo , Spirulina/química , Glicerol/química , Plásticos , Embalaje de Alimentos
12.
BMC Vet Res ; 20(1): 11, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183085

RESUMEN

BACKGROUND: The present study is designed to assess the effect of adding various doses of Spirulina platensis (SP) on broiler chicken growth performance, gut health, antioxidant biomarkers, cecal microbiota, histopathology, and immunohistochemistry of inducible nitric oxide synthase (iNOS). 240 male Cobb 500 broiler chicks (1 day old) were placed into four groups (sixty birds/group), then each group was further divided into three replicates of 20 chickens each for 35 days. Birds were allocated as follows; the 1st group (G1), the control group, fed on basal diet, the 2nd group (G2): basal diet plus SP (0.1%), the 3rd group (G3): basal diet plus SP (0.3%), and the 4th group (G4): basal diet plus SP (0.5%). RESULTS: Throughout the trial (d 1 to 35), SP fortification significantly increased body weight growth (BWG) and feed conversion rate (FCR) (P < 0.05). Bursa considerably increased among the immunological organs in the Spirulina-supplemented groups. Within SP-supplemented groups, there was a substantial increase in catalase activity, blood total antioxidant capacity, jejunal superoxide dismutase (SOD), and glutathione peroxidase (GPX) activity (P < 0.05). Fatty acid binding protein 2 (FABP2), one of the gut barrier health biomarkers, significantly increased in the SP-supplemented groups but the IL-1ß gene did not significantly differ across the groups (P < 0.05). Different organs in the control group showed histopathological changes, while the SP-supplemented chicken showed fewer or no signs of these lesions. The control group had higher levels of iNOS expression in the gut than the SP-supplemented groups (p < 0.05). Cecal Lactobacillus count significantly elevated with increasing the rate of SP inclusion rate (p < 0.05). CONCLUSION: Supplementing broiler diets with SP, particularly at 0.5%, can improve productivity and profitability by promoting weight increase, feed utilization, antioxidant status, immunity, and gastrointestinal health.


Asunto(s)
Antioxidantes , Spirulina , Animales , Masculino , Pollos , Decapodiformes , Biomarcadores
13.
Biotechnol Appl Biochem ; 71(1): 176-192, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37864368

RESUMEN

Thioredoxin reductase (TrxR, enzyme code [E.C.] 1.6.4.5) is a widely distributed flavoenzyme that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of thioredoxin and many other physiologically important substrates. Spirulina platensis is a blue-green algae that is often used as a dietary supplement. S. platensis is rich in protein, lipid, polysaccharide, pigment, carotenoid, enzyme, vitamins and many other chemicals and exhibits a variety of pharmacological functions. In the present study, a simple and efficient method to purify TrxR from S. platensis tablets is reported. The extractions were carried out using two different methods: heat denaturation and 2',5'-adenosine diphosphate Sepharose 4B affinity chromatography. The enzyme was purified by 415.04-fold over the crude extract, with a 19% yield, and specific activity of 0.7640 U/mg protein. Optimum pH, temperature and ionic strength of the enzyme activity, as well as the Michaelis constant (Km ) and maximum velocity of enzyme (Vmax ) values for NADPH and 5,5'-dithiobis(2-nitrobenzoic acid) were determined. Tested metal ions, vitamins, and drugs showed inhibition effects, except Se4+ ion, cefazolin sodium, teicoplanin, and tobramycin that increased the enzyme activity in vitro. Ag+ , Cu2+ , Mg2+ , Ni2+ , Pb2+ , Zn2+ , Al3+ , Cr3+ , Fe3+ , and V4+ ions; vitamin B3 , vitamin B6 , vitamin C, and vitamin U and aciclovir, azithromycin, benzyladenine, ceftriaxone sodium, clarithromycin, diclofenac, gibberellic acid, glurenorm, indole-3-butyric acid, ketorolac, metformin, mupirocin, mupirocin calcium, paracetamol, and tenofovir had inhibitory effects on TrxR. Ag+ exhibited stronger inhibition than 1-chloro-2,4-dinitrobenzene (a positive control).


Asunto(s)
Spirulina , Reductasa de Tiorredoxina-Disulfuro , NADP/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Cromatografía de Afinidad , Vitaminas , Iones
14.
BMC Vet Res ; 20(1): 176, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711127

RESUMEN

BACKGROUND: This investigation assessed the effects of high dietary inclusion of Spirulina (Arthrospira platensis) on broiler chicken growth performance, meat quality and nutritional attributes. For this, 120 male broiler chicks were housed in 40 battery brooders (three birds per brooder). Initially, for 14 days, a standard corn and soybean meal diet was administered. Subsequently, from days 14 to 35, chicks were assigned to one of the four dietary treatments (n = 10 per treatment): (1) control diet (CTR); (2) diet with 15% Spirulina (SP); (3) diet with 15% extruded Spirulina (SPE); and (4) diet with 15% Spirulina plus a super-dosing enzymes supplement (0.20% pancreatin extract and 0.01% lysozyme) (SPM). RESULTS: Throughout the experimental period, both SP and SPM diets resulted in decreased final body weight and body weight gain compared to control (p < 0.001), with the SPE diet showing comparable results to CTR. The SPE diet prompted an increase in average daily feed intake (p = 0.026). However, all microalga treatments increased the feed conversion ratio compared to CTR. Dietary inclusion of Spirulina notably increased intestinal content viscosity (p < 0.010), which was mitigated by the SPM diet. Spirulina supplementation led to lower pH levels in breast meat 24 h post-mortem and heightened the b* colour value in both breast and thigh meats (p < 0.010). Furthermore, Spirulina contributed to an increased accumulation of total carotenoids, n-3 polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA), while diminishing n-6 PUFA, thus altering the n-6/n-3 and PUFA/SFA ratios favourably (p < 0.001). However, it also reduced zinc concentration in breast meat (p < 0.001). CONCLUSIONS: The findings indicate that high Spirulina levels in broiler diets impair growth due to increased intestinal viscosity, and that extrusion pre-treatment mitigates this effect. Despite reducing digesta viscosity, a super-dosing enzyme mix did not improve growth. Data also indicates that Spirulina enriches meat with antioxidants and n-3 PUFA but reduces α-tocopherol and increases saturated fats. Reduced zinc content in meat suggests the need for Spirulina biofortification to maintain its nutritional value.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Carne , Spirulina , Animales , Pollos/crecimiento & desarrollo , Alimentación Animal/análisis , Spirulina/química , Dieta/veterinaria , Masculino , Carne/análisis , Carne/normas , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Muramidasa/metabolismo
15.
BMC Vet Res ; 20(1): 215, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773537

RESUMEN

CONTEXT: Recently, prioritize has been given to using natural phytogenic or nano compounds as growth promoters and immunostimulants in fish diets as an alternative to antibiotics. AIMS: The main propose of this trial was to determine the impact of supplementing diets with spirulina or curcumin nanoparticles on the performance and health indicators of Nile tilapia fingerlings. METHODS: In a 56-day feeding trial, 180 tilapia fingerlings were assigned into three main groups, as follows: 1st, control group, 2nd, Spirulina platensis (SP; 5 g kg-1 diet) and 3rd, curcumin nanoparticles (CUR-NPs; 30 mg kg-1 diet). KEY RESULTS: Incorporating tilapia diets with SP or CUR-NPs significantly improved performance, body chemical analysis, blood biochemical and hematological indices, digestive enzyme activities, and antioxidant and immunostimulant features compared to the control. CONCLUSION: Fortified tilapia diets with CUR-NPs or SP efficiently boost the productivity and health of Nile tilapia fingerlings. IMPLICATIONS: The research introduces new practical solutions for applying safe feed additives as alternatives to antibiotics in tilapia farming.


Asunto(s)
Alimentación Animal , Antioxidantes , Cíclidos , Curcumina , Dieta , Suplementos Dietéticos , Nanopartículas , Spirulina , Animales , Curcumina/farmacología , Curcumina/administración & dosificación , Spirulina/química , Cíclidos/inmunología , Cíclidos/sangre , Alimentación Animal/análisis , Nanopartículas/administración & dosificación , Nanopartículas/química , Dieta/veterinaria , Antioxidantes/farmacología , Composición Corporal/efectos de los fármacos
16.
BMC Vet Res ; 20(1): 505, 2024 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-39506864

RESUMEN

BACKGROUND: Studying the effect of dietary Spirulina and lysozyme supplementation on the metabolome and proteome of liver tissue contributes to understanding potential hepatic adaptations of piglets to these novel diets. This study aimed to understand the influence of including 10% Spirulina on the metabolome and proteome of piglet liver tissue. Three groups of 10 post-weaned piglets, housed in pairs, were fed for 28 days with one of three experimental diets: a cereal and soybean meal-based diet (Control), a base diet with 10% Spirulina (SP), and an SP diet supplemented with 0.01% lysozyme (SP + L). At the end of the trial, animals were sacrificed and liver tissue was collected. Metabolomics analysis (n = 10) was performed using NMR data analysed with PCA and PLS-DA. Proteomics analysis (n = 5) was conducted using a filter aided sample preparation (FASP) protocol and Tandem Mass Tag (TMT)-based quantitative approach with an Orbitrap mass spectrometer. RESULTS: Growth performance showed an average daily gain reduction of 9.5% and a feed conversion ratio increase of 10.6% in groups fed Spirulina compared to the control group. Metabolomic analysis revealed no significant differences among the groups and identified 60 metabolites in the liver tissue. Proteomics analysis identified 2,560 proteins, with 132, 11, and 52 differentially expressed in the Control vs. SP, Control vs. SP + L and SP vs. SP + L comparisons, respectively. This study demonstrated that Spirulina enhances liver energy conversion efficiency, detoxification and cellular secretion. It improves hepatic metabolic efficiency through alterations in fatty acid oxidation (e.g., upregulation of enzymes like fatty acid synthase and increased acetyl-CoA levels), carbohydrate catabolism (e.g., increased glucose and glucose-6-phosphate), pyruvate metabolism (e.g., higher levels of pyruvate and phosphoenolpyruvate carboxykinase), and cellular defence mechanisms (e.g., upregulation of glutathione and metallothionein). Lysozyme supplementation mitigates some adverse effects of Spirulina, bringing physiological responses closer to control levels. This includes fewer differentially expressed proteins and improved dry matter, organic matter and energy digestibility. Lysozyme also enhances coenzyme availability, skeletal myofibril assembly, actin-mediated cell contraction, tissue regeneration and development through mesenchymal migration and nucleic acid synthesis pathways. CONCLUSIONS: While Spirulina inclusion had some adverse effects on growth performance, it also enhanced hepatic metabolic efficiency by improving fatty acid oxidation, carbohydrate catabolism and cellular defence mechanisms. The addition of lysozyme further improved these benefits by reducing some of the negative impacts on growth and enhancing nutrient digestibility, tissue regeneration, and overall metabolic balance. Together, Spirulina and lysozyme demonstrate potential as functional dietary components, but further optimization is needed to fully realize their benefits without compromising growth performance.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Hígado , Muramidasa , Proteómica , Spirulina , Animales , Spirulina/química , Hígado/metabolismo , Hígado/efectos de los fármacos , Alimentación Animal/análisis , Muramidasa/metabolismo , Dieta/veterinaria , Porcinos , Metabolómica , Destete , Proteoma , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos
17.
BMC Vet Res ; 20(1): 290, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965554

RESUMEN

Edwardsiellosis is a bacterial fish disease that mostly occurs in freshwater farms and is characterized by a high mortality rate. Edwardsiella tarda strain was recovered from 17 fish out of 50 Nile tilapia, which were harboring clinical signs of systemic septicemia. The level of un-ionized ammonia (NH3) in the fish farm's water was 0.11-0.15 mg/L, which was stressful for the Nile tilapia.Sequencing of the gyrB1 gene confirmed that the isolate was E. tarda JALO4, and it was submitted to NCBI under the accession number PP449014. The isolated E. tarda harbored the virulence gene edw1 AHL-synthase (quorum sensing). In addition, the isolate was sensitive to trimethoprim and sulfamethoxazole mean while it was intermediate to florfenicol. The median lethal dose (LD50) of E. tarda JALO4 was determined to be 1.7 × 105 CFU/mL in Nile tilapia.In the indoor experiment, Nile tilapia (45.05 ± 0.4 g), which received dietary Spirulina platensis (5 and 10 g/kg fish feed), showed optimum growth and feed utilization. Meanwhile, after receiving dietary S. platensis, the fish's feed conversion ratio (FCR) was significantly enhanced compared to the control, which was 1.94, 1.99, and 2.88, respectively. The expression of immune-related genes interleukin (IL)-1ß and tumor necrosis factor (TNF)-α were upsurged in E. tarda-challenged fish with higher intensity in S. platensis groups. Dietary S. platensis at a dose of 10 g/kg fish feed could provide a relative protection level (RPL) of 22.2% Nile tilapia challenged against E. tarda. Nile tilapia experimentally infected E. tarda, drastically altering their behavior: higher operculum movement, low food apprehension, and abnormal swimming dietary S. platensis (10 g/kg fish feed) could rapidly restore normal status.It was concluded that Edwardsiellosis could alter Nile tilapia behavior with a high loss in fish population. Fish received dietary-S. platensis could rapidly restore normal behavior after E. tarda infection. It is recommended the incorporation of S. platensis at doses of 10 g/kg into the Nile tilapia diet to boost their immunity and counteract E. tarda infection.


Asunto(s)
Alimentación Animal , Cíclidos , Edwardsiella tarda , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Spirulina , Animales , Cíclidos/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Alimentación Animal/análisis , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/prevención & control , Acuicultura , Dieta/veterinaria
18.
J Nanobiotechnology ; 22(1): 371, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918805

RESUMEN

The gut microbiota is one of the essential contributors of the pathogenesis and progress of inflammatory bowel disease (IBD). Compared with first-line drug therapy, probiotic supplementation has emerged as a viable and secure therapeutic approach for managing IBD through the regulation of both the immune system and gut microbiota. Nevertheless, the efficacy of oral probiotic supplements is hindered by their susceptibility to the gastrointestinal barrier, leading to diminished bioavailability and restricted intestinal colonization. Here, we developed a bacteria-microalgae symbiosis system (EcN-SP) for targeted intestinal delivery of probiotics and highly effective treatment of colitis. The utilization of mircroalge Spirulina platensis (SP) as a natural carrier for the probiotic Escherichia coli Nissle 1917 (EcN) demonstrated potential benefits in promoting EcN proliferation, facilitating effective intestinal delivery and colonization. The alterations in the binding affinity of EcN-SP within the gastrointestinal environment, coupled with the distinctive structural properties of the SP carrier, served to overcome gastrointestinal barriers, minimizing transgastric EcN loss and enabling sustained intestinal retention and colonization. The oral administration of EcN-SP could effectively treat IBD by reducing the expression of intestinal inflammatory factors, maintaining the intestinal barrier and regulating the balance of gut microbiota. This probiotic delivery approach is inspired by symbiotic interactions found in nature and offers advantages in terms of feasibility, safety, and efficacy, thus holding significant promise for the management of gastrointestinal disorders.


Asunto(s)
Escherichia coli , Microbioma Gastrointestinal , Microalgas , Probióticos , Spirulina , Simbiosis , Animales , Ratones , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/terapia , Humanos , Colitis , Ratones Endogámicos C57BL , Masculino , Sistemas de Liberación de Medicamentos/métodos
19.
J Nanobiotechnology ; 22(1): 379, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943158

RESUMEN

The whole-cell inorganic-biohybrid systems show special functions and wide potential in biomedical application owing to the exceptional interactions between microbes and inorganic materials. However, the hybrid systems are still in stage of proof of concept. Here, we report a whole-cell inorganic-biohybrid system composed of Spirulina platensis and gold nanoclusters (SP-Au), which can enhance the cancer radiotherapy through multiple pathways, including cascade photocatalysis. Such systems can first produce oxygen under light irradiation, then convert some of the oxygen to superoxide anion (•O2-), and further oxidize the glutathione (GSH) in tumor cells. With the combination of hypoxic regulation, •O2- production, GSH oxidation, and the radiotherapy sensitization of gold nanoclusters, the final radiation is effectively enhanced, which show the best antitumor efficacy than other groups in both 4T1 and A549 tumor models. Moreover, in vivo distribution experiments show that the SP-Au can accumulate in the tumor and be rapidly metabolized through biodegradation, further indicating its application potential as a new multiway enhanced radiotherapy sensitizer.


Asunto(s)
Glutatión , Oro , Nanopartículas del Metal , Ratones Endogámicos BALB C , Spirulina , Animales , Humanos , Oro/química , Ratones , Glutatión/metabolismo , Nanopartículas del Metal/química , Células A549 , Línea Celular Tumoral , Neoplasias/radioterapia , Femenino , Fotosíntesis , Superóxidos/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/química
20.
Curr Microbiol ; 81(6): 152, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652305

RESUMEN

Spirulina (Arthrospira and Spirulina spp.) has always been characterized by the helical trichomes, despite the existence of linear forms. A great debate is now open on the morphological flexibility of Spirulina, but it seems that both trichome morphology and C-phycocyanin (C-PC) concentrations are influenced by the culture conditions.This work compared the effect of some key growth factors (medium pH as well as its carbon, potassium, and salt contents) on the growth and C-PC concentration of helical and linear Spirulina strains. Further, two-phase strategies, including light and nitrogen variation, were applied to increase the in vivo C-PC accumulation into the trichomes. Results showed that high pH induced trichomes elongation and improved growth but decreased C-PC content (+ 65 and + 43% vs. -83 and -49%, for helical and linear strains, respectively). Variations in carbon and salt concentrations negatively impacted growth and C-PC content, even if the linear strain was more robust against these fluctuations. It was also interesting to see that potassium increasing improved growth and C-PC content for both strains.The variation of light wavelength during the enrichment phase (in the two-phase strategy) improved by 50% C-PC accumulation in trichomes, especially after blue lighting for 96 h. Similar result was obtained after 48 h of nitrogen reduction, while its removal from the medium caused trichomes disintegration. The current work highlights the robustness of linear Spirulina strain and presents an efficient and scalable way to increase C-PC in vivo without affecting growth.


Asunto(s)
Carbono , Medios de Cultivo , Ficocianina , Spirulina , Spirulina/crecimiento & desarrollo , Spirulina/metabolismo , Spirulina/química , Ficocianina/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Carbono/metabolismo , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo , Luz , Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA