Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(2): e0181622, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36651746

RESUMEN

Foamy viruses (FVs) are ideal models for studying the long-term evolutionary history between viruses and their hosts. Currently, FVs have been documented in nearly all major taxa of vertebrates, but evidence is lacking for true FV infiltration in cartilaginous fish, the most basal living vertebrates with jaws. Here, we screened 11 available genomes and 10 transcriptome sequence assemblies of cartilaginous fish and revealed a novel endogenous foamy virus, termed cartilaginous fish endogenous foamy virus (CFEFV), in the genomes of sharks and rays. Genomic analysis of CFEFVs revealed feature motifs that were retained among canonical FVs. Phylogenetic analysis using polymerase sequences revealed the rooting nature of CFEFVs to vertebrate FVs, indicating their deep origin. Interestingly, three viral lineages were found in a shark (Scyliorhinus torazame), one of which was clustered with ray-finned fish foamy-like viruses, indicating that multiple episodes of viral infiltrations had occurred in this species. These findings fill a major gap in the Spumaretrovirinae taxon and reveal the aquatic origin of FVs found in terrestrial vertebrates. IMPORTANCE Although foamy viruses (FVs) have been found in major branches of vertebrates, the presence of these viruses in cartilaginous fish, the most basal living vertebrates with jaws, remains to be explored. This study revealed a collection of cartilaginous endogenous FVs in sharks and rays through in silico genomic mining. These viruses were rooted in the polymerase (POL) phylogeny, indicating the ancient aquatic origin of FVs. However, their envelope (ENV) protein grouped with those of amphibian FVs, suggesting different evolutionary histories of different FV genes. Overall, we provide the last missing gap for the taxonomic investigation of Spumaretrovirinae and provide concrete support for the aquatic origin of FVs.


Asunto(s)
Elasmobranquios , Spumavirus , Animales , Filogenia , Spumavirus/clasificación , Spumavirus/genética , Elasmobranquios/virología , Genoma/genética
2.
Virol J ; 20(1): 244, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37885034

RESUMEN

BACKGROUND: Foamy viruses (FVs) are unique nonpathogenic retroviruses, which remain latent in the host for a long time. Therefore, they may be safe, effective gene transfer vectors. In this study, were assessed FV-host cell interactions and the molecular mechanisms underlying FV latent infection. METHODS: We used the prototype FV (PFV) to infect HT1080 cells and a PFV indicator cell line (PFVL) to measure virus titers. After 48 h of infection, the culture supernatant (i.e., cell-free PFV particles) and transfected cells (i.e., cell-associated PFV particles) were harvested and incubated with PFVL. After another 48 h, the luciferase activity was used to measure virus titers. RESULTS: Through transcriptomics sequencing, we found that PREB mRNA expression was significantly upregulated. Moreover, PREB overexpression reduced PFV replication, whereas endogenous PREB knockdown increased PFV replication. PREB interacted with the Tas DNA-binding and transcriptional activation domains and interfered with its binding to the PFV long terminal repeat and internal promoter, preventing the recruitment of transcription factors and thereby inhibiting the transactivation function of Tas. PREB C-terminal 329-418 aa played a major role in inhibiting PFV replication; PREB also inhibited bovine FV replication. Therefore, PREB has a broad-spectrum inhibitory effect on FV replication. CONCLUSIONS: Our results demonstrated that PREB inhibits PFV replication by impeding its transcription.


Asunto(s)
Spumavirus , Animales , Bovinos , Spumavirus/genética , Spumavirus/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Dominios Proteicos , Retroviridae , Replicación Viral
3.
J Biol Chem ; 296: 100550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33744295

RESUMEN

Retroviral integrases must navigate host DNA packaged as chromatin during integration of the viral genome. Prototype foamy virus (PFV) integrase (IN) forms a tetramer bound to two viral DNA (vDNA) ends in a complex termed an intasome. PFV IN consists of four domains: the amino terminal extension domain (NED), amino terminal domain (NTD), catalytic core domain (CCD), and carboxyl terminal domain (CTD). The domains of the two inner IN protomers have been visualized, as well as the CCDs of the two outer IN protomers. However, the roles of the amino and carboxyl terminal domains of the PFV intasome outer subunits during integration to a nucleosome target substrate are not clear. We used the well-characterized 601 nucleosome to assay integration activity as well as intasome binding. PFV intasome integration to 601 nucleosomes occurs in clusters at four independent sites. We find that the outer protomer NED and NTD domains have no significant effects on integration efficiency, site selection, or binding. The CTDs of the outer PFV intasome subunits dramatically affect nucleosome binding but have little effect on total integration efficiency. The outer PFV IN CTDs did significantly alter the integration efficiency at one site. Histone tails also significantly affect intasome binding, but have little impact on PFV integration efficiency or site selection. These results indicate that binding to nucleosomes does not correlate with integration efficiency and suggests most intasome-binding events are unproductive.


Asunto(s)
Histonas/metabolismo , Integrasas/metabolismo , Nucleosomas/metabolismo , Spumavirus/metabolismo , Proteínas Virales/metabolismo , Integración Viral , Dominio Catalítico , Cromatina/genética , Cromatina/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Genoma Viral , Humanos , Integrasas/genética , Multimerización de Proteína , Spumavirus/genética , Spumavirus/crecimiento & desarrollo , Proteínas Virales/química , Proteínas Virales/genética
4.
Virol J ; 19(1): 195, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419065

RESUMEN

BACKGROUND: Foamy viruses (FVs) are retroviruses with unique replication strategies that cause lifelong latent infections in their hosts. FVs can also produce foam-like cytopathic effects in vitro. However, the effect of host cytokines on FV replication requires further investigation. Although interferon induced transmembrane (IFITMs) proteins have become the focus of antiviral immune response research due to their broad-spectrum antiviral ability, it remains unclear whether IFITMs can affect FV replication. METHOD: In this study, the PFV virus titer was characterized by measuring luciferase activity after co-incubation of PFVL cell lines with the cell culture supernatants (cell-free PFV) or the cells transfected with pcPFV plasmid/infected with PFV (cell-associated PFV). The foam-like cytopathic effects of PFV infected cells was observed to reflect the virus replication. The total RNA of PFV infected cells was extracted, and the viral genome was quantified by Quantitative reverse transcription PCR to detect the PFV entry into target cells. RESULTS: In the present study, we demonstrated that IFITM1-3 overexpression inhibited prototype foamy virus (PFV) replication. In addition, an IFITM3 knockdown by small interfering RNA increased PFV replication. We further demonstrated that IFITM3 inhibited PFV entry into host cells. Moreover, IFITM3 also reduced the number of PFV envelope proteins, which was related to IFITM3 promoted envelope degradation through the lysosomal pathway. CONCLUSIONS: Taken together, these results demonstrate that IFITM3 inhibits PFV replication by inhibiting PFV entry into target cells and reducing the number of PFV envelope.


Asunto(s)
Spumavirus , Virosis , Humanos , Antivirales/metabolismo , Spumavirus/genética , Replicación Viral , Línea Celular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
Intervirology ; 65(1): 17-28, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34438397

RESUMEN

BACKGROUND: For foamy virus, the transactivator of spumaretrovirus (Tas) could bind directly to target DNA sequences termed as Tas responsive elements and trigger the viral internal promoter (IP) and long terminal repeat (LTR) promoters. The cellular endogenous factors also play an important role in viral gene expressions. We hypothesized that except the viral transcription factor Tas, the cellular endogenous factors also affect the viral gene expression. METHODS: The full length of the prototype foamy virus (PFV) genome (U21247) was used to predict the potential binding sites of the transcription factors by online software JASPAR (http://jaspar.genereg.net) and Softberry (http://linux1.softberry.com/berry.phtml?topic=index&group=programs&subgroup=promoter). The Dual-Luciferase® Reporter Assay System (Promega, USA) was used to confirm the relative luciferase activities of the test groups. The different representative activating agents or inhibitors of each canonical signal pathway were used to identify the impact of these pathways on PFV 5'LTR and IP promoters. RESULTS: The results showed different cellular endogenous factors might have respective effects on PFV 5'LTR and IP. It is worth mentioning that activator protein-1 and BCL2-associated athanogene 3, 2 kinds of vital proteins associated with NF-κB and PKC pathways, could activate the basal activity of 5'LTR and IP promoters but inhibit the Tas-regulated activity of both promoters. Furthermore, PFV Tas was identified to trigger the transcription of the NF-κB promoter. CONCLUSION: NF-κB had a negative effect on PFV 5'LTR and IP promoter activities, the PKC pathway might upregulate 5'LTR and IP promoter activities, and the JNK and NF-AT signal pathway could increase the Tas-regulated promoter activity of PFV 5'LTR. This study sheds light on the interaction between PFV and the host cell and may help utilize the viral promoters in retroviral vectors designed for gene transfer experiments.


Asunto(s)
Spumavirus , Línea Celular , Regiones Promotoras Genéticas , Spumavirus/genética , Secuencias Repetidas Terminales/genética , Factores de Transcripción
6.
Retrovirology ; 18(1): 38, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903241

RESUMEN

BACKGROUND: Prototype foamy virus (PFV) is nonpathogenic complex retroviruses that express a transcriptional transactivator Tas, which is essential for the activity of viral long terminal repeat (LTR) promoter and internal promoter (IP). Tripartite motif-containing protein 28 (Trim28) is well known as a scaffold protein normally enriched in gene promoter region to repress transcription. We sought to determine if whether Trim28 could be enriched in PFV promoter region to participate the establishment of PFV latency infection. RESULTS: In this study, we show that Trim28 restricts Tas-dependent transactivation activity of PFV promoter and negatively regulates PFV replication. Trim28 was found to be enriched in LTR instead of IP promoter regions of PFV genome and contribute to the maintenance of histone H3K9me3 marks on the LTR promoter. Furthermore, Trim28 interacts with Tas and colocalizes with Tas in the nucleus. Besides, we found that Trim28, an E3 ubiquitin ligase, binds directly to and promotes Tas for ubiquitination and degradation. And the RBCC domain of Trim28 is required for the ubiquitination and degradation of Tas. CONCLUSIONS: Collectively, our findings not only identify a host factor Trim28 negatively inhibits PFV replication by acting as transcriptional restriction factor enriched in viral LTR promoter through modulating H3K9me3 mark here, but also reveal that Trim28 mediated ubiquitin proteasome degradation of Tas as a mechanism underlying Trim28 restricts Tas-dependent transcription activity of PFV promoter and PFV replication. These findings provide new insights into the process of PFV latency establishment.


Asunto(s)
Histonas/metabolismo , Spumavirus , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Línea Celular , Humanos , Spumavirus/genética , Secuencias Repetidas Terminales , Transactivadores/genética , Transactivadores/metabolismo , Replicación Viral
7.
Nature ; 523(7560): 366-9, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26061770

RESUMEN

Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.


Asunto(s)
Nucleosomas/química , Nucleosomas/virología , Spumavirus/metabolismo , Integración Viral , Sustitución de Aminoácidos , Sitios de Unión/genética , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Genoma/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestructura , Integrasas/metabolismo , Modelos Moleculares , Nucleosomas/genética , Nucleosomas/ultraestructura , Multimerización de Proteína , Recombinación Genética , Spumavirus/química , Spumavirus/genética , Spumavirus/ultraestructura
8.
Nucleic Acids Res ; 47(7): 3607-3618, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30767014

RESUMEN

The integration of the retroviral genome into the chromatin of the infected cell is catalysed by the integrase (IN)•viral DNA complex (intasome). This process requires functional association between the integration complex and the nucleosomes. Direct intasome/histone contacts have been reported to modulate the interaction between the integration complex and the target DNA (tDNA). Both prototype foamy virus (PFV) and HIV-1 integrases can directly bind histone amino-terminal tails. We have further investigated this final association by studying the effect of isolated histone tails on HIV-1 integration. We show here that the binding of HIV-1 IN to a peptide derived from the H4 tail strongly stimulates integration catalysis in vitro. This stimulation was not observed with peptide tails from other variants or with alpha-retroviral (RAV) and spuma-retroviral PFV integrases. Biochemical analyses show that the peptide tail induces both an increase in the IN oligomerization state and affinity for the target DNA, which are associated with substantial structural rearrangements in the IN carboxy-terminal domain (CTD) observed by NMR. Our data indicate that the H4 peptide tail promotes the formation of active strand transfer complexes (STCs) and support an activation step of the incoming intasome at the contact of the histone tail.


Asunto(s)
Integrasa de VIH/genética , VIH-1/genética , Histonas/genética , Integración Viral/genética , Catálisis , Cromatina/genética , Cromatina/virología , Genoma Viral/genética , VIH-1/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Nucleosomas/genética , Nucleosomas/virología , Spumavirus/genética
9.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894477

RESUMEN

Cross-species transmission of simian foamy viruses (SFVs) from nonhuman primates (NHPs) to humans is currently ongoing. These zoonotic retroviruses establish lifelong persistent infection in their human hosts. SFV are apparently nonpathogenic in vivo, with ubiquitous in vitro tropism. Here, we aimed to identify envelope B-cell epitopes that are recognized following a zoonotic SFV infection. We screened a library of 169 peptides covering the external portion of the envelope from the prototype foamy virus (SFVpsc_huHSRV.13) for recognition by samples from 52 Central African hunters (16 uninfected and 36 infected with chimpanzee, gorilla, or Cercopithecus SFV). We demonstrate the specific recognition of peptide N96-V110 located in the leader peptide, gp18LP Forty-three variant peptides with truncations, alanine substitutions, or amino acid changes found in other SFV species were tested. We mapped the epitope between positions 98 and 108 and defined six amino acids essential for recognition. Most plasma samples from SFV-infected humans cross-reacted with sequences from apes and Old World monkey SFV species. The magnitude of binding to peptide N96-V110 was significantly higher for samples of individuals infected with a chimpanzee or gorilla SFV than those infected with a Cercopithecus SFV. In conclusion, we have been the first to define an immunodominant B-cell epitope recognized by humans following zoonotic SFV infection.IMPORTANCE Foamy viruses are the oldest known retroviruses and have been mostly described to be nonpathogenic in their natural animal hosts. SFVs can be transmitted to humans, in whom they establish persistent infection, like the simian lenti- and deltaviruses that led to the emergence of two major human pathogens, human immunodeficiency virus type 1 and human T-lymphotropic virus type 1. This is the first identification of an SFV-specific B-cell epitope recognized by human plasma samples. The immunodominant epitope lies in gp18LP, probably at the base of the envelope trimers. The NHP species the most genetically related to humans transmitted SFV strains that induced the strongest antibody responses. Importantly, this epitope is well conserved across SFV species that infect African and Asian NHPs.


Asunto(s)
Virus Espumoso de los Simios/inmunología , Proteínas del Envoltorio Viral/inmunología , Zoonosis/inmunología , Adulto , Animales , Anticuerpos Antivirales/sangre , Camerún , Cercopithecus/virología , ADN Viral/sangre , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Gabón , Gorilla gorilla/virología , Hominidae/inmunología , Hominidae/virología , Humanos , Masculino , Persona de Mediana Edad , Pan troglodytes/virología , Infecciones por Retroviridae/virología , Virus Espumoso de los Simios/genética , Spumavirus/genética , Spumavirus/inmunología , Proteínas del Envoltorio Viral/genética , Zoonosis/genética , Zoonosis/virología
10.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046446

RESUMEN

Strong viral enhancers in gammaretrovirus vectors have caused cellular proto-oncogene activation and leukemia, necessitating the use of cellular promoters in "enhancerless" self-inactivating integrating vectors. However, cellular promoters result in relatively low transgene expression, often leading to inadequate disease phenotype correction. Vectors derived from foamy virus, a nonpathogenic retrovirus, show higher preference for nongenic integrations than gammaretroviruses/lentiviruses and preferential integration near transcriptional start sites, like gammaretroviruses. We found that strong viral enhancers/promoters placed in foamy viral vectors caused extremely low immortalization of primary mouse hematopoietic stem/progenitor cells compared to analogous gammaretrovirus/lentivirus vectors carrying the same enhancers/promoters, an effect not explained solely by foamy virus' modest insertional site preference for nongenic regions compared to gammaretrovirus/lentivirus vectors. Using CRISPR/Cas9-mediated targeted insertion of analogous proviral sequences into the LMO2 gene and then measuring LMO2 expression, we demonstrate a sequence-specific effect of foamy virus, independent of insertional bias, contributing to reduced genotoxicity. We show that this effect is mediated by a 36-bp insulator located in the foamy virus long terminal repeat (LTR) that has high-affinity binding to the CCCTC-binding factor. Using our LMO2 activation assay, LMO2 expression was significantly increased when this insulator was removed from foamy virus and significantly reduced when the insulator was inserted into the lentiviral LTR. Our results elucidate a mechanism underlying the low genotoxicity of foamy virus, identify a novel insulator, and support the use of foamy virus as a vector for gene therapy, especially when strong enhancers/promoters are required.IMPORTANCE Understanding the genotoxic potential of viral vectors is important in designing safe and efficacious vectors for gene therapy. Self-inactivating vectors devoid of viral long-terminal-repeat enhancers have proven safe; however, transgene expression from cellular promoters is often insufficient for full phenotypic correction. Foamy virus is an attractive vector for gene therapy. We found foamy virus vectors to be remarkably less genotoxic, well below what was expected from their integration site preferences. We demonstrate that the foamy virus long terminal repeats contain an insulator element that binds CCCTC-binding factor and reduces its insertional genotoxicity. Our study elucidates a mechanism behind the low genotoxic potential of foamy virus, identifies a unique insulator, and supports the use of foamy virus as a vector for gene therapy.


Asunto(s)
Vectores Genéticos , Elementos Aisladores , Spumavirus/genética , Secuencias Repetidas Terminales , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Sistemas CRISPR-Cas/genética , Células Cultivadas , Terapia Genética/métodos , Células Madre Hematopoyéticas/virología , Proteínas con Dominio LIM/genética , Ratones , Mutagénesis Insercional , Pruebas de Mutagenicidad , Proto-Oncogenes Mas , Transducción Genética , Transgenes
11.
Biosci Biotechnol Biochem ; 83(2): 270-280, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30319037

RESUMEN

DD(35)E motif in catalytic core domain (CCD) of integrase (IN) is extremely involved in retroviral integration step. Here, nine single residue mutants of feline foamy virus (FFV) IN were generated to study their effects on IN activities and on viral replication. As expected, mutations in the highly conserved D107, D164, and E200 residues abolished all IN catalytic activities (3'-end processing, strand transfer, and disintegration) as well as viral infectivity by blocking viral DNA integration into cellular DNA. However, Q165, Y191, and S195 mutants, which are located closely to DDE motif were observed to have diverse levels of enzymatic activities, compared to those of the wild type IN. Their mutant viruses produced by one-cycle transfection showed different infectivity on their natural host cells. Therefore, it is likely that effects of single residue mutation at DDE motif is critical on viral replication depending on the position of the residues.


Asunto(s)
ADN Viral/genética , Integrasas/genética , Mutación , Spumavirus/genética , Integración Viral/genética , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Gatos , Línea Celular , Integrasas/química , Integrasas/metabolismo , Homología de Secuencia de Aminoácido , Spumavirus/enzimología , Spumavirus/patogenicidad , Spumavirus/fisiología , Virulencia , Replicación Viral
12.
Acta Virol ; 63(2): 162-168, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31230445

RESUMEN

Foamy viruses (FVs) or spumaviruses are retroviruses that are explored as vectors for gene therapy. The good feature of foamy viruses is its broad tropism; however, their infections result in non-targeted gene expression. Here, we attempted to design the liver targeted viral gene delivery by employing liver specific gene promoters like albumin (ALB), transthyretin (TTR) and hepatitis B virus (HBV) promoters. We compared the relative gene expression of liver specific promoters versus the U3 promoter in liver cell line (HepG2) and non-liver cell lines: human fibrosarcoma cell line (HT1080), baby hamster kidney cell line (BHK), human embryonic kidney cell line (HEK 293T) and cervical cancer cell line (HeLa). We have found that the promoter exchange didn't affect viral assembly. The ability to drive gene expression was best with TTR promoter which was followed by HBV and ALB promoter. The use of TTR, HBV and ALB promoters are helpful in achieving liver specific gene expression. Keywords: foamy virus; gene therapy; liver; albumin; transthyretin promoter; HBV promoter.


Asunto(s)
Hígado , Regiones Promotoras Genéticas , Spumavirus , Adulto , Animales , Línea Celular , Cricetinae , Terapia Genética , Vectores Genéticos , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Hígado/metabolismo , Regiones Promotoras Genéticas/genética , Spumavirus/genética
13.
Retrovirology ; 15(1): 38, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769087

RESUMEN

BACKGROUND: Hosts are able to restrict viral replication to contain virus spread before adaptive immunity is fully initiated. Many viruses have acquired genes directly counteracting intrinsic restriction mechanisms. This phenomenon has led to a co-evolutionary signature for both the virus and host which often provides a barrier against interspecies transmission events. Through different mechanisms of action, but with similar consequences, spumaviral feline foamy virus (FFV) Bet and lentiviral feline immunodeficiency virus (FIV) Vif counteract feline APOBEC3 (feA3) restriction factors that lead to hypermutation and degradation of retroviral DNA genomes. Here we examine the capacity of vif to substitute for bet function in a chimeric FFV to assess the transferability of anti-feA3 factors to allow viral replication. RESULTS: We show that vif can replace bet to yield replication-competent chimeric foamy viruses. An in vitro selection screen revealed that an engineered Bet-Vif fusion protein yields suboptimal protection against feA3. After multiple passages through feA3-expressing cells, however, variants with optimized replication competence emerged. In these variants, Vif was expressed independently from an N-terminal Bet moiety and was stably maintained. Experimental infection of immunocompetent domestic cats with one of the functional chimeras resulted in seroconversion against the FFV backbone and the heterologous FIV Vif protein, but virus could not be detected unambiguously by PCR. Inoculation with chimeric virus followed by wild-type FFV revealed that repeated administration of FVs allowed superinfections with enhanced antiviral antibody production and detection of low level viral genomes, indicating that chimeric virus did not induce protective immunity against wild-type FFV. CONCLUSIONS: Unrelated viral antagonists of feA3 cellular restriction factors can be exchanged in FFV, resulting in replication competence in vitro that was attenuated in vivo. Bet therefore may have additional functions other than A3 antagonism that are essential for successful in vivo replication. Immune reactivity was mounted against the heterologous Vif protein. We conclude that Vif-expressing FV vaccine vectors may be an attractive tool to prevent or modulate lentivirus infections with the potential option to induce immunity against additional lentivirus antigens.


Asunto(s)
Productos del Gen vif/genética , Virus de la Inmunodeficiencia Felina/genética , Proteínas de los Retroviridae/genética , Spumavirus/genética , Vacunas Virales/genética , Replicación Viral , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Gatos , Línea Celular , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Orden Génico , Productos del Gen gag/metabolismo , Genoma Viral , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Virus de la Inmunodeficiencia Felina/inmunología , Recombinación Genética , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/virología , Spumavirus/inmunología , Carga Viral , Vacunas Virales/inmunología
14.
J Gene Med ; 20(7-8): e3028, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29935087

RESUMEN

BACKGROUND: Previous studies have shown that foamy viral (FV) vectors are a promising alternative to gammaretroviral and lentiviral vectors and also that insulators can improve FV vector safety. However, in a previous analysis of insulator effects on FV vector safety, strong viral promoters were used to elicit genotoxic events. In the present study, we developed and analyzed the efficacy and safety of a high-titer, clinically relevant FV vector driven by the housekeeping promoter elongation factor-1α and insulated with an enhancer blocking A1 insulator (FV-EGW-A1). METHODS: Human CD34+ cord blood cells were exposed to an enhanced green fluorescent protein expressing vector, FV-EGW-A1, at a multiplicity of infection of 10 and then maintained in vitro or transplanted into immunodeficient mice. Flow cytometry was used to measure engraftment and marking in vivo. FV vector integration sites were analyzed to assess safety. RESULTS: FV-EGW-A1 resulted in high-marking, multilineage engraftment of human repopulating cells with no evidence of silencing. Engraftment was highly polyclonal with no clonal dominance and a promising safety profile based on integration site analysis. CONCLUSIONS: An FV vector with an elongation factor-1α promoter and an A1 insulator is a promising vector design for use in the clinic.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Células Madre Hematopoyéticas/metabolismo , Spumavirus/genética , Transducción Genética , Animales , Expresión Génica , Orden Génico , Genes Reporteros , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Trasplante de Células Madre Hematopoyéticas , Xenoinjertos , Humanos , Ratones , Transgenes
15.
PLoS Pathog ; 12(11): e1005981, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27829070

RESUMEN

The Spumaretrovirinae, or foamy viruses (FVs) are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV). The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA) and C-terminal domains (CtDCA) of archetypal orthoretroviral capsid protein (CA). Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN-CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold.


Asunto(s)
Proteínas de la Cápside/genética , Productos del Gen gag/química , Productos del Gen gag/genética , Spumavirus/genética , Ensamble de Virus/fisiología , Secuencia de Aminoácidos , Animales , Western Blotting , Cápside , Línea Celular , Humanos , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
PLoS Pathog ; 12(8): e1005860, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27579920

RESUMEN

Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells.


Asunto(s)
Cápside/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Infecciones por Retroviridae/metabolismo , Spumavirus/metabolismo , Integración Viral/fisiología , Secuencias de Aminoácidos , Animales , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Células HeLa , Humanos , Ratones , Fosforilación/genética , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Ratas , Infecciones por Retroviridae/genética , Spumavirus/genética
17.
Virus Genes ; 54(4): 550-560, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29855776

RESUMEN

Foamy viruses are unconventional and complex retroviruses distinct from the other members of the Retroviridae family. Currently, no disease has been firmly linked to persistent foamy virus infection of their cognate host including simians, bovines, felines, and equines or upon zoonotic transmission of different simian foamy viruses to humans. Bovine and simian foamy viruses have been recently shown to encode a RNA polymerase-III-driven micro RNA cluster which likely modulates and regulates host-virus interactions at different levels. Using sub-genomic bovine foamy virus micro RNA expression plasmids and dual luciferase reporter assays as readout, the requirements for expression and processing of the bovine foamy virus micro RNAs have been analyzed. Here, we report that the minimal BFV micro RNA cassette is significantly weaker than a U6 promoter-based construct and strongly suppressed by flanking sequences. The primary micro RNA sequence can be manipulated and chimerized as long as the dumbbell-like folding of the primary micro RNA is maintained. Since more subtle changes are associated with reduced functionality, the overall structure and shape, but possibly individual elements and residues also, are important for the expression and processing of the bovine foamy virus micro RNAs.


Asunto(s)
Regulación Viral de la Expresión Génica , Secuencias Invertidas Repetidas , MicroARNs/química , MicroARNs/genética , ARN Viral , Infecciones por Retroviridae/virología , Spumavirus/genética , Animales , Bovinos , Línea Celular , Cricetinae , Perros , Orden Génico , Genes Reporteros , Genoma Viral , Humanos , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas
18.
Gene Ther ; 24(3): 187-198, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28024082

RESUMEN

Retroviral vector-mediated stem cell gene therapy is a promising approach for the treatment of hematopoietic disorders. However, genotoxic side effects from integrated vector proviruses are a significant concern for the use of retroviral vectors in the clinic. Insulated foamy viral (FV) vectors are potentially safer retroviral vectors for hematopoietic stem cell gene therapy. We evaluated two newly identified human insulators, A1 and A2, for use in FV vectors. These insulators had moderate insulating capacity and higher titers than previously developed insulated FV vectors. The A1-insulated FV vector was chosen for comparison with the previously described 650cHS4-insulated FV vector in human cord blood CD34+ repopulating cells in an immunodeficient mouse model. To maximize the effects of the insulators on the safety of FV vectors, FV vectors containing a highly genotoxic spleen focus forming virus promoter were used to elicit differences in genotoxicity. In vivo, the A1-insulated FV vector showed an approximate 50% reduction in clonal dominance compared with either the 650cHS4-insulated or control FV vectors, although the transduction efficiency of the A1-insulated vector was higher. This data suggests that the A1-insulated FV vector is promising for future preclinical and clinical studies.


Asunto(s)
Terapia Genética/efectos adversos , Vectores Genéticos/genética , Elementos Aisladores , Spumavirus/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Daño del ADN , Terapia Genética/métodos , Vectores Genéticos/efectos adversos , Células HEK293 , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Ratones
19.
Retrovirology ; 14(1): 10, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28166800

RESUMEN

BACKGROUND: The foamy viral genome encodes four central purine-rich elements localized in the integrase-coding region of pol. Previously, we have shown that the first two of these RNA elements (A and B) are required for protease dimerization and activation. The D element functions as internal polypurine tract during reverse transcription. Peters et al., described the third element (C) as essential for gag expression suggesting that it might serve as an RNA export element for the unspliced genomic transcript. RESULTS: Here, we analysed env splicing and demonstrate that the described C element composed of three GAA repeats known to bind SR proteins regulates env splicing, thus balancing the amount of gag/pol mRNAs. Deletion of the C element effectively promotes a splice site switch from a newly identified env splice acceptor to the intrinsically strong downstream localised env 3' splice acceptor permitting complete splicing of almost all LTR derived transcripts. We provide evidence that repression of this env splice acceptor is a prerequisite for gag expression. This repression is achieved by the C element, resulting in impaired branch point recognition and SF1/mBBP binding. Separating the branch point from the overlapping purine-rich C element, by insertion of only 20 nucleotides, liberated repression and fully restored splicing to the intrinsically strong env 3' splice site. This indicated that the cis-acting element might repress splicing by blocking the recognition of essential splice site signals. CONCLUSIONS: The foamy viral purine-rich C element regulates splicing by suppressing the branch point recognition of the strongest env splice acceptor. It is essential for the formation of unspliced gag and singly spliced pol transcripts.


Asunto(s)
Regulación Viral de la Expresión Génica , Productos del Gen gag/genética , Genes env , Genes pol , Purinas/química , Spumavirus/genética , Genoma Viral , Humanos , Empalme del ARN , ARN Viral/genética
20.
Arch Virol ; 162(4): 1141-1144, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28040837

RESUMEN

Nucleotide sequences are the fundamental basis for work on molecular mechanisms and for phylogenetic analysis. Recently, we identified sequence errors in all of the LTR sequences of the prototypic foamy virus stored in the GenBank database. Here, we report the resequencing of the proviral plasmids pHSRV13 and pHSRV2. Sequence comparisons revealed an error rate for the foamy virus sequences stored in the database of up to 10 errors per 1000 bp. Even the newest sequences of the codon-optimized foamy virus synthetic Gag, Pol, and Env amino acid sequences showed exchanges compared to the new proviral pHSRV13n sequence. Our results provide evidence that some prototypic foamy virus sequences contain errors and should be revised.


Asunto(s)
Bases de Datos de Ácidos Nucleicos/normas , Plásmidos/genética , Análisis de Secuencia de ADN/normas , Spumavirus/genética , Secuencia de Bases , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA