Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(22): 9525-9535, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38758591

RESUMEN

While the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.


Asunto(s)
Trichodesmium , Trichodesmium/metabolismo , Golfo de México , Cianobacterias/metabolismo , Eutrofización , Cromatografía Liquida , Espectrometría de Masas en Tándem
2.
Environ Sci Technol ; 58(21): 9236-9249, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748855

RESUMEN

Nitrogen fixation by the diazotrophic cyanobacterium Trichodesmium contributes up to 50% of the bioavailable nitrogen in the ocean. N2 fixation by Trichodesmium is limited by the availability of nutrients, such as iron (Fe) and phosphorus (P). Although colloids are ubiquitous in the ocean, the effects of Fe limitation on nitrogen fixation by marine colloids (MC) and the related mechanisms are largely unexplored. In this study, we found that MC exhibit photoelectrochemical properties that boost nitrogen fixation by photoelectrophy in Trichodesmium erythraeum. MC efficiently promote photosynthesis in T. erythraeum, thus enhancing its growth. Photoexcited electrons from MC are directly transferred to the photosynthetic electron transport chain and contribute to nitrogen fixation and ammonia assimilation. Transcriptomic analysis revealed that MC significantly upregulates genes related to the electron transport chain, photosystem, and photosynthesis, which is consistent with elevated photosynthetic capacities (e.g., Fv/Fm and carboxysomes). As a result, MC increase the N2 fixation rate by 67.5-89.3%. Our findings highlight a proof-of-concept electron transfer pathway by which MC boost nitrogen fixation, broadening our knowledge on the role of ubiquitous colloids in marine nitrogen biogeochemistry.


Asunto(s)
Coloides , Fijación del Nitrógeno , Trichodesmium , Trichodesmium/metabolismo , Fotosíntesis , Nitrógeno/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34750267

RESUMEN

Filamentous and colony-forming cells within the cyanobacterial genus Trichodesmium might account for nearly half of nitrogen fixation in the sunlit ocean, a critical mechanism that sustains plankton's primary productivity. Trichodesmium has long been portrayed as a diazotrophic genus. By means of genome-resolved metagenomics, here we reveal that nondiazotrophic Trichodesmium species not only exist but also are abundant and widespread in the open ocean, benefiting from a previously overlooked functional lifestyle to expand the biogeography of this prominent marine genus. Near-complete environmental genomes for those closely related candidate species reproducibly shared functional features including a lack of genes related to nitrogen fixation, hydrogen recycling, and hopanoid lipid production concomitant with the enrichment of nitrogen assimilation genes. Our results elucidate fieldwork observations of Trichodesmium cells fixing carbon but not nitrogen. The Black Queen hypothesis and burden of low-oxygen concentration requirements provide a rationale to explain gene loss linked to nitrogen fixation among Trichodesmium species. Disconnecting taxonomic signal for this genus from a microbial community's ability to fix nitrogen will help refine our understanding of the marine nitrogen balance. Finally, we are reminded that established links between taxonomic lineages and functional traits do not always hold true.


Asunto(s)
Agua de Mar/microbiología , Trichodesmium/genética , Trichodesmium/fisiología , Carbono/metabolismo , Cianobacterias/genética , Cianobacterias/fisiología , Genoma/genética , Metagenómica/métodos , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Fijación del Nitrógeno/fisiología , Océanos y Mares
4.
J Proteome Res ; 21(1): 77-89, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34855411

RESUMEN

Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium Trichodesmium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO2, we observed robust correlations of stress-induced proteins and RNAs (i.e., involved in transport and homeostasis) that yield useful information on the nutrient status under low and/or high CO2. Conversely, transcriptional and translational correlations of many other central metabolism pathways exhibit broad discordance. A cellular RNA and protein production/degradation model demonstrates how biomolecules with small initial inventories, such as environmentally responsive proteins, achieve large increases in fold-change units as opposed to those with a higher basal expression and inventory such as metabolic systems. Microbial cells, due to their immersion in the environment, tend to show large adaptive responses in both RNA and protein that result in transcript-protein correlations. These observations and model results demonstrate multi-omic coherence for environmental biomarkers and provide the underlying mechanism for those observations, supporting the promise for global application in detecting responses to environmental stimuli in a changing ocean.


Asunto(s)
Cianobacterias , Trichodesmium , Cianobacterias/metabolismo , Biomarcadores Ambientales , Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Trichodesmium/genética , Trichodesmium/metabolismo
5.
Mol Biol Evol ; 38(3): 927-939, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33022053

RESUMEN

A major challenge in modern biology is understanding how the effects of short-term biological responses influence long-term evolutionary adaptation, defined as a genetically determined increase in fitness to novel environments. This is particularly important in globally important microbes experiencing rapid global change, due to their influence on food webs, biogeochemical cycles, and climate. Epigenetic modifications like methylation have been demonstrated to influence short-term plastic responses, which ultimately impact long-term adaptive responses to environmental change. However, there remains a paucity of empirical research examining long-term methylation dynamics during environmental adaptation in nonmodel, ecologically important microbes. Here, we show the first empirical evidence in a marine prokaryote for long-term m5C methylome modifications correlated with phenotypic adaptation to CO2, using a 7-year evolution experiment (1,000+ generations) with the biogeochemically important marine cyanobacterium Trichodesmium. We identify m5C methylated sites that rapidly changed in response to high (750 µatm) CO2 exposure and were maintained for at least 4.5 years of CO2 selection. After 7 years of CO2 selection, however, m5C methylation levels that initially responded to high-CO2 returned to ancestral, ambient CO2 levels. Concurrently, high-CO2 adapted growth and N2 fixation rates remained significantly higher than those of ambient CO2 adapted cell lines irrespective of CO2 concentration, a trend consistent with genetic assimilation theory. These data demonstrate the maintenance of CO2-responsive m5C methylation for 4.5 years alongside phenotypic adaptation before returning to ancestral methylation levels. These observations in a globally distributed marine prokaryote provide critical evolutionary insights into biogeochemically important traits under global change.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Dióxido de Carbono/fisiología , Metilación de ADN , Trichodesmium/genética , Epigenoma , Fenotipo , Transcripción Genética
6.
Environ Microbiol ; 23(11): 6798-6810, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34519133

RESUMEN

In the surface waters of the warm oligotrophic ocean, filaments and aggregated colonies of the nitrogen (N)-fixing cyanobacterium Trichodesmium create microscale nutrient-rich oases. These hotspots fuel primary productivity and harbour a diverse consortium of heterotrophs. Interactions with associated microbiota can affect the physiology of Trichodesmium, often in ways that have been predicted to support its growth. Recently, it was found that trimethylamine (TMA), a globally abundant organic N compound, inhibits N2 fixation in cultures of Trichodesmium without impairing growth rate, suggesting that Trichodesmium can use TMA as an alternate N source. In this study, 15 N-TMA DNA stable isotope probing (SIP) of a Trichodesmium enrichment was employed to further investigate TMA metabolism and determine whether TMA-N is incorporated directly or secondarily via cross-feeding facilitated by microbial associates. Herein, we identify two members of the marine Roseobacter clade (MRC) of Alphaproteobacteria as the likely metabolizers of TMA and provide genomic evidence that they converted TMA into a more readily available form of N, e.g., ammonium (NH4 + ), which was subsequently used by Trichodesmium and the rest of the community. The results implicate microbiome-mediated carbon (C) and N transformations in modulating N2 fixation and thus highlight the involvement of host-associated heterotrophs in global biogeochemical cycling.


Asunto(s)
Alphaproteobacteria , Trichodesmium , Metilaminas/metabolismo , Fijación del Nitrógeno , Trichodesmium/genética , Trichodesmium/metabolismo
7.
J Phycol ; 57(1): 172-182, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32975309

RESUMEN

The diazotrophic cyanobacterium Trichodesmium is thought to be a major contributor to the new N in parts of the oligotrophic, subtropical, and tropical oceans. In this study, physiological and biochemical methods and transcriptome sequencing were used to investigate the influences of ocean acidification (OA) on Trichodesmium erythraeum (T. erythraeum). We presented evidence that OA caused by CO2 slowed the growth rate and physiological activity of T. erythraeum. OA led to reduced development of proportion of the vegetative cells into diazocytes which included up-regulated genes of nitrogen fixation. Reactive oxygen species (ROS) accumulation was increased due to the disruption of photosynthetic electron transport and decrease in antioxidant enzyme activities under acidified conditions. This study showed that OA increased the amounts of (exopolysaccharides) EPS in T. erythraeum, and the key genes of ribose-5-phosphate (R5P) and glycosyltransferases (Tery_3818) were up-regulated. These results provide new insight into how ROS and EPS of T. erythraeum increase in an acidified future ocean to cope with OA-imposed stress.


Asunto(s)
Trichodesmium , Concentración de Iones de Hidrógeno , Fijación del Nitrógeno , Océanos y Mares , Especies Reactivas de Oxígeno , Agua de Mar
8.
Biochem Soc Trans ; 48(6): 2657-2667, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33196077

RESUMEN

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10-18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Asunto(s)
Biliverdina/química , Técnicas Biosensibles , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/instrumentación , Animales , Antozoos , Biofisica , Cianobacterias/metabolismo , Proteínas Fluorescentes Verdes/química , Humanos , Peróxido de Hidrógeno/química , Proteínas Luminiscentes/química , Ratones , Nanopartículas/química , Neoplasias/cirugía , Oxígeno/química , Fotoblanqueo , Ficobilisomas/química , Fitocromo/química , Dispersión de Radiación , Espectrometría de Fluorescencia/métodos , Trichodesmium/metabolismo , Proteína Fluorescente Roja
9.
Glob Chang Biol ; 26(11): 6445-6456, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32870567

RESUMEN

Estimates of marine N2 fixation range from 52 to 73 Tg N/year, of which we calculate up to 84% is from Trichodesmium based on previous measurements of nifH gene abundance and our new model of Trichodesmium growth. Here, we assess the likely effects of four major climate change-related abiotic factors on the spatiotemporal distribution and growth potential of Trichodesmium for the last glacial maximum (LGM), the present (2006-2015) and the end of this century (2100) by mapping our model of Trichodesmium growth onto inferred global surface ocean fields of pCO2 , temperature, light and Fe. We conclude that growth rate was severely limited by low pCO2 at the LGM, that current pCO2 levels do not significantly limit Trichodesmium growth and thus, the potential for enhanced growth from future increases in CO2 is small. We also found that the area of the ocean where sea surface temperatures (SST) are within Trichodesmium's thermal niche increased by 32% from the LGM to present, but further increases in SST due to continued global warming will reduce this area by 9%. However, the range reduction at the equator is likely to be offset by enhanced growth associated with expansion of regions with optimal or near optimal Fe and light availability. Between now and 2100, the ocean area of optimal SST and irradiance is projected to increase by 7%, and the ocean area of optimal SST, irradiance and iron is projected to increase by 173%. Given the major contribution of this keystone species to annual N2 fixation and thus pelagic ecology, biogeochemistry and CO2 sequestration, the projected increase in the geographical range for optimal growth could provide a negative feedback to increasing atmospheric CO2 concentrations.


Asunto(s)
Trichodesmium , Cambio Climático , Fijación del Nitrógeno
10.
J Nat Prod ; 83(9): 2664-2671, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32816476

RESUMEN

The trichophycin family of compounds are chlorinated polyketides first discovered from environmental collections of a bloom-forming Trichodesmium sp. cyanobacterium. In an effort to fully capture the chemical space of this group of metabolites, the utilization of MS/MS-based molecular networking of a Trichodesmium thiebautii extract revealed a metabolome replete with halogenated compounds. Subsequent MS-guided isolation resulted in the characterization of isotrichophycin C and trichophycins G-I (1-4). These new metabolites had intriguing structural variations from those trichophycins previously characterized, which allowed for a comparative study to examine structural features that are associated with toxicity to murine neuroblastoma cells. Additionally, we propose the absolute configuration of the previously characterized trichophycin A (5). Overall, the metabolome of the Trichodesmium bloom is hallmarked by an unprecedented amount of chlorinated molecules, many of which remain to be structurally characterized.


Asunto(s)
Cianobacterias/química , Trichodesmium/química , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Cloro/química , ADN/química , ADN/genética , ADN/aislamiento & purificación , Espectrometría de Masas , Metaboloma , Ratones , Estructura Molecular , Filogenia , Espectrometría de Masas en Tándem
11.
Environ Monit Assess ; 192(8): 526, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32676790

RESUMEN

Trichodesmium, a marine cyanobacterium, plays a significant role in the global nitrogen cycle due to its nitrogen fixing ability. Large patches of Trichodesmium blooms were observed in the coastal waters, off Goa during spring intermonsoon (SIM) of 2014-2018. Zeaxanthin was the dominant pigment in the bloom region. Here, we present the spectral absorption and fluorescence characteristics of colored dissolved organic matter (CDOM) during these blooms. CDOM concentration was much higher in the bloom patches as compared with nonbloom regions. During the bloom spectral CDOM absorption had distinct peaks in the UV region due to the presence of UV-absorbing/screening compounds, mycosporine-like amino acids (MAAs) and in the visible region due to phycobiliproteins (PBPs). The spectral fluorescence signatures by the traditional peak picking method exhibited three peaks, one was protein-like, and the other two were humic-like. Apart from these, Trichodesmium exhibited strong protein-like fluorescence with 370/460 nm (Ex/Em), which is a signature of cyanobacteria. A parallel factor analysis (PARAFAC) on the fluorescence excitation-emission matrix (EEM) of Trichodesmium dataset fitted a 3-component model of which one was protein-like, and two were humic-like. The fluorescence index (FI) values during Trichodesmium bloom was very high (~ 3) compared with the typical range of 1.2-1.8 observed for the natural waters. Bloom degradation experiments proved that increase in tryptophan fluorescence enhances the CDOM absorption. Our study indicates that Trichodesmium blooms provide a rich source of organic matter in the coastal waters and long-term monitoring of these blooms is essential for understanding the health of ecosystem.


Asunto(s)
Trichodesmium , Ecosistema , Monitoreo del Ambiente , Análisis Factorial , Espectrometría de Fluorescencia
12.
J Biol Chem ; 293(47): 18099-18109, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30217820

RESUMEN

Atmospheric nitrogen fixation by photosynthetic cyanobacteria (diazotrophs) strongly influences oceanic primary production and in turn affects global biogeochemical cycles. Species of the genus Trichodesmium are major contributors to marine diazotrophy, accounting for a significant proportion of the fixed nitrogen in tropical and subtropical oceans. However, Trichodesmium spp. are metabolically constrained by the availability of iron, an essential element for both the photosynthetic apparatus and the nitrogenase enzyme. Survival strategies in low-iron environments are typically poorly characterized at the molecular level, because these bacteria are recalcitrant to genetic manipulation. Here, we studied a homolog of the iron deficiency-induced A (IdiA)/ferric uptake transporter A (FutA) protein, Tery_3377, which has been used as an in situ iron-stress biomarker. IdiA/FutA has an ambiguous function in cyanobacteria, with its homologs hypothesized to be involved in distinct processes depending on their cellular localization. Using signal sequence fusions to GFP and heterologous expression in the model cyanobacterium Synechocystis sp. PCC 6803, we show that Tery_3377 is targeted to the periplasm by the twin-arginine translocase and can complement the deletion of the native Synechocystis ferric-iron ABC transporter periplasmic binding protein (FutA2). EPR spectroscopy revealed that purified recombinant Tery_3377 has specificity for iron in the Fe3+ state, and an X-ray crystallography-determined structure uncovered a functional iron substrate-binding domain, with Fe3+ pentacoordinated by protein and buffer ligands. Our results support assignment of Tery_3377 as a functional FutA subunit of an Fe3+ ABC transporter but do not rule out dual IdiA function.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Agua de Mar/microbiología , Trichodesmium/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Proteínas de Unión a Hierro/genética , Océanos y Mares , Dominios Proteicos , Trichodesmium/química , Trichodesmium/genética , Trichodesmium/aislamiento & purificación
13.
Environ Microbiol ; 21(2): 667-681, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30585394

RESUMEN

Metacaspases are cysteine specific proteases implicated in cell-signalling, stress acclimation and programmed cell death (PCD) pathways in plants, fungi, protozoa, bacteria and algae. We investigated metacaspase-like gene expression and biochemical activity in the bloom-forming, N2 -fixing, marine cyanobacterium Trichodesmium, which undergoes PCD under low iron and high-light stress. We examined these patterns with respect to in-silico analyses of protein domain architectures that revealed a diverse array of regulatory domains within Trichodesmium metacaspases-like (TeMC) proteins. Experimental manipulations of laboratory cultures and oceanic surface blooms of Trichodesmium from the South Pacific Ocean triggered PCD under Fe-limitation and high light along with enhanced TeMC activity and upregulated expression of diverse TeMC representatives containing different regulatory domains. Furthermore, TeMC activity was significantly and positively correlated with caspase-like activity, which has been routinely observed to increase with PCD induction in Trichodesmium. Although both TeMC and caspase-like activities were stimulated upon PCD induction, inhibitor treatments of these proteolytic activities provided further evidence of largely distinct substrate specificities, even though some inhibitory crossover was observed. Our findings are the first results linking metacaspase expression and activity in PCD induced mortality in Trichodesmium. Yet, the role/s and specific activities of these different proteins remain to be elucidated.


Asunto(s)
Apoptosis , Proteínas Bacterianas/metabolismo , Caspasas/metabolismo , Trichodesmium/citología , Trichodesmium/enzimología , Animales , Apoptosis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Caspasas/química , Caspasas/genética , Océano Pacífico , Dominios Proteicos , Agua de Mar/microbiología , Trichodesmium/aislamiento & purificación
14.
Nat Methods ; 13(9): 763-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479328

RESUMEN

Far-red fluorescent proteins (FPs) are desirable for in vivo imaging because with these molecules less light is scattered, absorbed, or re-emitted by endogenous biomolecules compared with cyan, green, yellow, and orange FPs. We developed a new class of FP from an allophycocyanin α-subunit (APCα). Native APC requires a lyase to incorporate phycocyanobilin. The evolved FP, which we named small ultra-red FP (smURFP), covalently attaches a biliverdin (BV) chromophore without a lyase, and has 642/670-nm excitation-emission peaks, a large extinction coefficient (180,000 M(-1)cm(-1)) and quantum yield (18%), and photostability comparable to that of eGFP. smURFP has significantly greater BV incorporation rate and protein stability than the bacteriophytochrome (BPH) FPs. Moreover, BV supply is limited by membrane permeability, and smURFPs (but not BPH FPs) can incorporate a more membrane-permeant BV analog, making smURFP fluorescence comparable to that of FPs from jellyfish or coral. A far-red and near-infrared fluorescent cell cycle indicator was created with smURFP and a BPH FP.


Asunto(s)
Técnicas Biosensibles , Proteínas Luminiscentes/aislamiento & purificación , Ficocianina/química , Trichodesmium/metabolismo , Biliverdina/química , Ciclo Celular/fisiología , Escherichia coli/genética , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/efectos de la radiación , Mutación , Ficocianina/metabolismo , Conformación Proteica , Estabilidad Proteica , Subunidades de Proteína , Proteína Fluorescente Roja
15.
New Phytol ; 222(2): 852-863, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30507001

RESUMEN

To understand the role of micrometer-scale oxygen (O2 ) gradients in facilitating dinitrogen (N2 ) fixation, we characterized O2 dynamics in the microenvironment around free-floating trichomes and colonies of Trichodesmium erythraeum IMS101. Diurnal and spatial variability in O2 concentrations in the bulk medium, within colonies, along trichomes and within single cells were determined using O2 optodes, microsensors and model calculations. Carbon (C) and N2 fixation as well as O2 evolution and uptake under different O2 concentrations were analyzed by stable isotope incubations and membrane inlet mass spectrometry. We observed a pronounced diel rhythm in O2 fluxes, with net O2 evolution restricted to short periods in the morning and evening, and net O2 uptake driven by dark respiration and light-dependent O2 uptake during the major part of the light period. Remarkably, colonies showed lower N2 fixation and C fixation rates than free-floating trichomes despite the long period of O2 undersaturation in the colony microenvironment. Model calculations demonstrate that low permeability of the cell wall in combination with metabolic heterogeneity between single cells allows for anoxic intracellular conditions in colonies but also free-floating trichomes of Trichodesmium. Therefore, whereas colony formation must have benefits for Trichodesmium, it does not favor N2 fixation.


Asunto(s)
Ambiente , Fijación del Nitrógeno , Trichodesmium/fisiología , Ciclo del Carbono , Pared Celular/metabolismo , Ritmo Circadiano/fisiología , Modelos Biológicos , Oxígeno/metabolismo , Permeabilidad , Tricomas/metabolismo
16.
Photosynth Res ; 142(1): 17-34, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31077001

RESUMEN

Growth and dinitrogen (N2) fixation of the globally important diazotrophic cyanobacteria Trichodesmium are often limited by iron (Fe) availability in surface seawaters. To systematically examine the combined effects of Fe limitation and ocean acidification (OA), T. erythraeum strain IMS101 was acclimated to both Fe-replete and Fe-limited concentrations under ambient and acidified conditions. Proteomic analysis showed that OA affected a wider range of proteins under Fe-limited conditions compared to Fe-replete conditions. OA also led to an intensification of Fe deficiency in key cellular processes (e.g., photosystem I and chlorophyll a synthesis) in already Fe-limited T. erythraeum. This is a result of reallocating Fe from these processes to Fe-rich nitrogenase to compensate for the suppressed N2 fixation. To alleviate the Fe shortage, the diazotroph adopts a series of Fe-based economic strategies (e.g., upregulating Fe acquisition systems for organically complexed Fe and particulate Fe, replacing ferredoxin by flavodoxin, and using alternative electron flow pathways to produce ATP). This was more pronounced under Fe-limited-OA conditions than under Fe limitation only. Consequently, OA resulted in a further decrease of N2- and carbon-fixation rates in Fe-limited T. erythraeum. In contrast, Fe-replete T. erythraeum induced photosystem I (PSI) expression to potentially enhance the PSI cyclic flow for ATP production to meet the higher demand for energy to cope with the stress caused by OA. Our study provides mechanistic insight into the holistic response of the globally important N2-fixing marine cyanobacteria Trichodesmium to acidified and Fe-limited conditions of future oceans.


Asunto(s)
Hierro/metabolismo , Proteoma , Agua de Mar/química , Trichodesmium/metabolismo , Aclimatación , Carbono/metabolismo , Recuento de Células , Tamaño de la Célula , Clorofila A/metabolismo , Concentración de Iones de Hidrógeno , Fijación del Nitrógeno , Océanos y Mares , Fotosíntesis , Proteómica , Estrés Fisiológico
17.
J Exp Bot ; 70(2): 589-597, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30380078

RESUMEN

As atmospheric CO2 concentrations increase, so too does the dissolved CO2 and HCO3- concentrations in the world's oceans. There are still many uncertainties regarding the biological response of key groups of organisms to these changing conditions, which is crucial for predicting future species distributions, primary productivity rates, and biogeochemical cycling. In this study, we established the relationship between gross photosynthetic O2 evolution and light-dependent O2 consumption in Trichodesmium erythraeum IMS101 acclimated to three targeted pCO2 concentrations (180 µmol mol-1=low-CO2, 380 µmol mol-1=mid-CO2, and 720 µmol mol-1=high-CO2). We found that biomass- (carbon) specific, light-saturated maximum net O2 evolution rates (PnC,max) and acclimated growth rates increased from low- to mid-CO2, but did not differ significantly between mid- and high-CO2. Dark respiration rates were five times higher than required to maintain cellular metabolism, suggesting that respiration provides a substantial proportion of the ATP and reductant for N2 fixation. Oxygen uptake increased linearly with gross O2 evolution across light intensities ranging from darkness to 1100 µmol photons m-2 s-1. The slope of this relationship decreased with increasing CO2, which we attribute to the increased energetic cost of operating the carbon-concentrating mechanism at lower CO2 concentrations. Our results indicate that net photosynthesis and growth of T. erythraeum IMS101 would have been severely CO2 limited at the last glacial maximum, but that the direct effect of future increases of CO2 may only cause marginal increases in growth.


Asunto(s)
Fotosíntesis , Trichodesmium/metabolismo , Dióxido de Carbono , Respiración de la Célula , Luz , Fijación del Nitrógeno , Consumo de Oxígeno , Trichodesmium/crecimiento & desarrollo , Trichodesmium/efectos de la radiación
19.
Proc Natl Acad Sci U S A ; 113(47): E7367-E7374, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27830646

RESUMEN

Most investigations of biogeochemically important microbes have focused on plastic (short-term) phenotypic responses in the absence of genetic change, whereas few have investigated adaptive (long-term) responses. However, no studies to date have investigated the molecular progression underlying the transition from plasticity to adaptation under elevated CO2 for a marine nitrogen-fixer. To address this gap, we cultured the globally important cyanobacterium Trichodesmium at both low and high CO2 for 4.5 y, followed by reciprocal transplantation experiments to test for adaptation. Intriguingly, fitness actually increased in all high-CO2 adapted cell lines in the ancestral environment upon reciprocal transplantation. By leveraging coordinated phenotypic and transcriptomic profiles, we identified expression changes and pathway enrichments that rapidly responded to elevated CO2 and were maintained upon adaptation, providing strong evidence for genetic assimilation. These candidate genes and pathways included those involved in photosystems, transcriptional regulation, cell signaling, carbon/nitrogen storage, and energy metabolism. Conversely, significant changes in specific sigma factor expression were only observed upon adaptation. These data reveal genetic assimilation as a potentially adaptive response of Trichodesmium and importantly elucidate underlying metabolic pathways paralleling the fixation of the plastic phenotype upon adaptation, thereby contributing to the few available data demonstrating genetic assimilation in microbial photoautotrophs. These molecular insights are thus critical for identifying pathways under selection as drivers in plasticity and adaptation.


Asunto(s)
Proteínas Bacterianas/genética , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Trichodesmium/crecimiento & desarrollo , Adaptación Fisiológica , Metabolismo Energético , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , Aptitud Genética , Fijación del Nitrógeno , Factor sigma/genética , Trichodesmium/genética
20.
Proc Natl Acad Sci U S A ; 113(46): 13191-13196, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799527

RESUMEN

The oceanic N2-fixing cyanobacterium Trichodesmium spp. form extensive surface blooms and contribute significantly to marine carbon and nitrogen cycles in the oligotrophic subtropical and tropical oceans. Trichodesmium grows in salinities from 27 to 43 parts per thousand (ppt), yet its salt acclimation strategy remains enigmatic because the genome of Trichodesmium erythraeum strain IMS101 lacks all genes for the biosynthesis of any known compatible solute. Using NMR and liquid chromatography coupled to mass spectroscopy, we identified the main compatible solute in T. erythraeum strain IMS101 as the quaternary ammonium compound N,N,N-trimethyl homoserine (or homoserine betaine) and elucidated its biosynthetic pathway. The identification of this compatible solute explains how Trichodesmium spp. can thrive in the marine system at varying salinities and provides further insight into the diversity of microbial salt acclimation.


Asunto(s)
Homoserina/análogos & derivados , Homoserina/metabolismo , Tolerancia a la Sal , Trichodesmium/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13 , Metilación , Espectroscopía de Protones por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA