Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 28: 627-53, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22905955

RESUMEN

Planar cell polarity (PCP), the orientation and alignment of cells within a sheet, is a ubiquitous cellular property that is commonly governed by the conserved set of proteins encoded by so-called PCP genes. The PCP proteins coordinate developmental signaling cues with individual cell behaviors in a wildly diverse array of tissues. Consequently, disruptions of PCP protein functions are linked to defects in axis elongation, inner ear patterning, neural tube closure, directed ciliary beating, and left/right patterning, to name only a few. This review attempts to synthesize what is known about PCP and the PCP proteins in vertebrate animals, with a particular focus on the mechanisms by which individual cells respond to PCP cues in order to execute specific cellular behaviors.


Asunto(s)
Polaridad Celular , Desarrollo Embrionario , Animales , División Celular , Movimiento Celular , Cilios/metabolismo , Cilios/fisiología , Nervio Facial/citología , Nervio Facial/embriología , Nervio Facial/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/fisiología , Folículo Piloso/citología , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Tubo Neural/citología , Tubo Neural/metabolismo , Tubo Neural/fisiología
2.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34351410

RESUMEN

The spinal cord receives input from peripheral sensory neurons and controls motor output by regulating muscle innervating motor neurons. These functions are carried out by neural circuits comprising molecularly distinct neuronal subtypes generated in a characteristic spatiotemporal arrangement from progenitors in the embryonic neural tube. To gain insight into the diversity and complexity of cells in the developing human neural tube, we used single-cell mRNA sequencing to profile cervical and thoracic regions in four human embryos of Carnegie stages (CS) CS12, CS14, CS17 and CS19 from gestational weeks 4-7. Analysis of progenitor and neuronal populations from the neural tube and dorsal root ganglia identified dozens of distinct cell types and facilitated the reconstruction of the differentiation pathways of specific neuronal subtypes. Comparison with mouse revealed overall similarity of mammalian neural tube development while highlighting some human-specific features. These data provide a catalogue of gene expression and cell type identity in the human neural tube that will support future studies of sensory and motor control systems. The data can be explored at https://shiny.crick.ac.uk/scviewer/neuraltube/.


Asunto(s)
Médula Espinal/fisiología , Transcriptoma/genética , Transcriptoma/fisiología , Animales , Diferenciación Celular/fisiología , Embrión de Mamíferos/fisiología , Ganglios Espinales/fisiología , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Neuronas Motoras/fisiología , Tubo Neural/fisiología , Células Receptoras Sensoriales/fisiología , Tórax/fisiología
3.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34463728

RESUMEN

The collective polarization of cellular structures and behaviors across a tissue plane is a near universal feature of epithelia known as planar cell polarity (PCP). This property is controlled by the core PCP pathway, which consists of highly conserved membrane-associated protein complexes that localize asymmetrically at cell junctions. Here, we introduce three new mouse models for investigating the localization and dynamics of transmembrane PCP proteins: Celsr1, Fz6 and Vangl2. Using the skin epidermis as a model, we characterize and verify the expression, localization and function of endogenously tagged Celsr1-3xGFP, Fz6-3xGFP and tdTomato-Vangl2 fusion proteins. Live imaging of Fz6-3xGFP in basal epidermal progenitors reveals that the polarity of the tissue is not fixed through time. Rather, asymmetry dynamically shifts during cell rearrangements and divisions, while global, average polarity of the tissue is preserved. We show using super-resolution STED imaging that Fz6-3xGFP and tdTomato-Vangl2 can be resolved, enabling us to observe their complex localization along junctions. We further explore PCP fusion protein localization in the trachea and neural tube, and discover new patterns of PCP expression and localization throughout the mouse embryo.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de la Membrana/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Diagnóstico por Imagen/métodos , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiología , Células Epidérmicas/metabolismo , Células Epidérmicas/fisiología , Epidermis/metabolismo , Epidermis/fisiología , Epitelio/metabolismo , Epitelio/fisiología , Receptores Frizzled/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/metabolismo , Tubo Neural/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Tráquea/metabolismo , Tráquea/fisiología
4.
J Biol Chem ; 294(8): 2924-2934, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30573686

RESUMEN

Neural tube closure requires apical constriction during which contraction of the apical F-actin network forces the cell into a wedged shape, facilitating the folding of the neural plate into a tube. However, how F-actin assembly at the apical surface is regulated in mammalian neurulation remains largely unknown. We report here that formin homology 2 domain-containing 3 (Fhod3), a formin protein that mediates F-actin assembly, is essential for cranial neural tube closure in mouse embryos. We found that Fhod3 is expressed in the lateral neural plate but not in the floor region of the closing neural plate at the hindbrain. Consistently, in Fhod3-null embryos, neural plate bending at the midline occurred normally, but lateral plates seemed floppy and failed to flex dorsomedially. Because the apical accumulation of F-actin and constriction were impaired specifically at the lateral plates in Fhod3-null embryos, we concluded that Fhod3-mediated actin assembly contributes to lateral plate-specific apical constriction to advance closure. Intriguingly, Fhod3 expression at the hindbrain was restricted to neuromeric segments called rhombomeres. The rhombomere-specific accumulation of apical F-actin induced by the rhombomere-restricted expression of Fhod3 was responsible for the outward bulging of rhombomeres involving apical constriction along the anteroposterior axis, as rhombomeric bulging was less prominent in Fhod3-null embryos than in the wild type. Fhod3 thus plays a crucial role in the morphological changes associated with neural tube closure at the hindbrain by mediating apical constriction not only in the mediolateral but also in the anteroposterior direction, thereby contributing to tube closure and rhombomere segmentation, respectively.


Asunto(s)
Proteínas de Microfilamentos/fisiología , Morfogénesis , Placa Neural/citología , Tubo Neural/citología , Neurulación , Citoesqueleto de Actina/metabolismo , Animales , Células Cultivadas , Femenino , Forminas , Ratones , Ratones Noqueados , Placa Neural/fisiología , Tubo Neural/fisiología
5.
J Neurosci ; 38(20): 4762-4773, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29712790

RESUMEN

Failure of neural tube closure leads to neural tube defects (NTDs), which can have serious neurological consequences or be lethal. Use of antiepileptic drugs (AEDs) during pregnancy increases the incidence of NTDs in offspring by unknown mechanisms. Here we show that during Xenopus laevis neural tube formation, neural plate cells exhibit spontaneous calcium dynamics that are partially mediated by glutamate signaling. We demonstrate that NMDA receptors are important for the formation of the neural tube and that the loss of their function induces an increase in neural plate cell proliferation and impairs neural cell migration, which result in NTDs. We present evidence that the AED valproic acid perturbs glutamate signaling, leading to NTDs that are rescued with varied efficacy by preventing DNA synthesis, activating NMDA receptors, or recruiting the NMDA receptor target ERK1/2. These findings may prompt mechanistic identification of AEDs that do not interfere with neural tube formation.SIGNIFICANCE STATEMENT Neural tube defects are one of the most common birth defects. Clinical investigations have determined that the use of antiepileptic drugs during pregnancy increases the incidence of these defects in the offspring by unknown mechanisms. This study discovers that glutamate signaling regulates neural plate cell proliferation and oriented migration and is necessary for neural tube formation. We demonstrate that the widely used antiepileptic drug valproic acid interferes with glutamate signaling and consequently induces neural tube defects, challenging the current hypotheses arguing that they are side effects of this antiepileptic drug that cause the increased incidence of these defects. Understanding the mechanisms of neurotransmitter signaling during neural tube formation may contribute to the identification and development of antiepileptic drugs that are safer during pregnancy.


Asunto(s)
Anticonvulsivantes/toxicidad , Defectos del Tubo Neural/fisiopatología , Tubo Neural/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Movimiento Celular , Proliferación Celular , Femenino , Glutamatos/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Placa Neural/citología , Placa Neural/crecimiento & desarrollo , Tubo Neural/crecimiento & desarrollo , Defectos del Tubo Neural/inducido químicamente , Transducción de Señal/efectos de los fármacos , Ácido Valproico/toxicidad , Xenopus laevis
6.
Dev Biol ; 435(2): 130-137, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29397878

RESUMEN

Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Defectos del Tubo Neural/genética , Tubo Neural/fisiología , Neurulación/genética , Factores de Transcripción/fisiología , Animales , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Estratos Germinativos/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Placa Neural/metabolismo , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/patología , Especificidad de Órganos , ARN Mensajero/biosíntesis , Disrafia Espinal/embriología , Disrafia Espinal/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
7.
PLoS Comput Biol ; 14(2): e1006003, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29470492

RESUMEN

Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Memoria , Tubo Neural/fisiología , Algoritmos , Secuencias de Aminoácidos , Animales , ADN/química , Ratones , Modelos Genéticos , Modelos Estadísticos , Redes Neurales de la Computación , Neuronas/fisiología , Dinámicas no Lineales , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factor de Transcripción PAX6/metabolismo , Procesos Estocásticos , Biología de Sistemas , Termodinámica
8.
Dev Biol ; 432(1): 34-42, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27742210

RESUMEN

Neurons of the dorsal hindbrain and spinal cord are central in receiving, processing and relaying sensory perception and participate in the coordination of sensory-motor output. Numerous cellular and molecular mechanisms that underlie neuronal development in both regions of the nervous system are shared. We discuss here the mechanisms that generate neuronal diversity in the dorsal spinal cord and hindbrain, and emphasize similarities in patterning and neuronal specification. Insight into the developmental mechanisms has provided tools that can help to assign functions to small subpopulations of neurons. Hence, novel information on how mechanosensory or pain sensation is encoded under normal and neuropathic conditions has already emerged. Such studies show that the complex neuronal circuits that control perception of somatosensory and viscerosensory stimuli are becoming amenable to investigations.


Asunto(s)
Rombencéfalo/embriología , Rombencéfalo/fisiología , Médula Espinal/embriología , Médula Espinal/fisiología , Animales , Tipificación del Cuerpo/fisiología , Red Nerviosa , Tubo Neural/embriología , Tubo Neural/fisiología , Neurogénesis
9.
Dev Biol ; 432(1): 24-33, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28625870

RESUMEN

Transcription factors are key orchestrators of the emergence of neuronal diversity within the developing spinal cord. As such, the two paralogous proteins Pax3 and Pax7 regulate the specification of progenitor cells within the intermediate neural tube, by defining a neat segregation between those fated to form motor circuits and those involved in the integration of sensory inputs. To attain insights into the molecular means by which they control this process, we have performed detailed phenotypic analyses of the intermediate spinal interneurons (IN), namely the dI6, V0D, V0VCG and V1 populations in compound null mutants for Pax3 and Pax7. This has revealed that the levels of Pax3/7 proteins determine both the dorso-ventral extent and the number of cells produced in each subpopulation; with increasing levels leading to the dorsalisation of their fate. Furthermore, thanks to the examination of mutants in which Pax3 transcriptional activity is skewed either towards repression or activation, we demonstrate that this cell diversification process is mainly dictated by Pax3/7 ability to repress gene expression. Consistently, we show that Pax3 and Pax7 inhibit the expression of Dbx1 and of its repressor Prdm12, fate determinants of the V0 and V1 interneurons, respectively. Notably, we provide evidence for the activity of several cis-regulatory modules of Dbx1 to be sensitive to Pax3 and Pax7 transcriptional activity levels. Altogether, our study provides insights into how the redundancy within a TF family, together with discrete dynamics of expression profiles of each member, are exploited to generate cellular diversity. Furthermore, our data supports the model whereby cell fate choices in the neural tube do not rely on binary decisions but rather on inhibition of multiple alternative fates.


Asunto(s)
Proteínas de Homeodominio/fisiología , Interneuronas/fisiología , Proteínas del Tejido Nervioso/fisiología , Factor de Transcripción PAX3/fisiología , Factor de Transcripción PAX7/fisiología , Médula Espinal/citología , Animales , Diferenciación Celular/fisiología , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Interneuronas/citología , Ratones , Tubo Neural/fisiología , Médula Espinal/embriología , Células Madre/citología , Células Madre/fisiología
10.
Dev Biol ; 432(1): 178-191, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28986144

RESUMEN

In the spinal cord, motor axons project out the neural tube at specific exit points, then bundle together to project toward target muscles. The molecular signals that guide motor axons to and out of their exit points remain undefined. Since motor axons and their exit points are located near the floor plate, guidance signals produced by the floor plate and adjacent ventral tissues could influence motor axons as they project toward and out of exit points. The secreted Slit proteins are major floor plate repellents, and motor neurons express two Slit receptors, Robo1 and Robo2. Using mutant mouse embryos at early stages of motor axon exit, we found that motor exit points shifted ventrally in Robo1/2 or Slit1/2 double mutants. Along with the ventral shift, mutant axons had abnormal trajectories both within the neural tube toward the exit point, and after exit into the periphery. In contrast, the absence of the major ventral attractant, Netrin-1, or its receptor, DCC caused motor exit points to shift dorsally. Netrin-1 attraction on spinal motor axons was demonstrated by in vitro explant assays, showing that Netrin-1 increased outgrowth and attracted cultured spinal motor axons. The opposing effects of Slit/Robo and Netrin-1/DCC signals were tested genetically by combining Netrin-1 and Robo1/2 mutations. The location of exit points in the combined mutants was significantly recovered to their normal position compared to Netrin-1 or Robo1/2 mutants. Together, these results suggest that the proper position of motor exit points is determined by a "push-pull" mechanism, pulled ventrally by Netrin-1/DCC attraction and pushed dorsally by Slit/Robo repulsion.


Asunto(s)
Axones/fisiología , Glicoproteínas/fisiología , Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/fisiología , Netrinas/fisiología , Médula Espinal/fisiología , Animales , Axones/metabolismo , Movimiento Celular/fisiología , Receptor DCC/metabolismo , Ratones , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Netrinas/metabolismo , Tubo Neural/citología , Tubo Neural/metabolismo , Tubo Neural/fisiología , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal/genética , Médula Espinal/citología , Médula Espinal/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Roundabout
11.
Development ; 142(5): 811-6, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25715392

RESUMEN

The spinal cord constitutes an excellent model system for studying development and regeneration of a functional nervous system, from specification of its precursors to circuit formation. The latest advances in the field of spinal cord development and its regeneration following damage were discussed at a recent EMBO workshop 'Spinal cord development and regeneration' in Sitges, Spain (October, 2014), highlighting the use of direct visualization of cellular processes, genome-wide molecular techniques and the development of methods for directed stem cell differentiation and regeneration.


Asunto(s)
Médula Espinal/metabolismo , Médula Espinal/fisiología , Animales , Ciclo Celular/fisiología , Humanos , Modelos Biológicos , Tubo Neural/citología , Tubo Neural/metabolismo , Tubo Neural/fisiología , Neurogénesis/fisiología , Regeneración/fisiología , Médula Espinal/citología
12.
FASEB J ; 31(8): 3622-3635, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28432198

RESUMEN

Periconception maternal folic acid (vitamin B9) supplementation can reduce the prevalence of neural tube defects (NTDs), although just how folates benefit the developing embryo and promote closing of the neural tube and other morphologic processes during development remains unknown. Folate contributes to a 1-carbon metabolism, which is essential for purine biosynthesis and methionine recycling and affects methylation of DNA, histones, and nonhistone proteins. Herein, we used animal models and cultured mammalian cells to demonstrate that disruption of the methylation pathway mediated by folate compromises normal neural tube closure (NTC) and ciliogenesis. We demonstrate that the embryos with NTD failed to adequately methylate septin2, a key regulator of cilium structure and function. We report that methylation of septin2 affected its GTP binding activity and formation of the septin2-6-7 complex. We propose that folic acid promotes normal NTC in some embryos by regulating the methylation of septin2, which is critical for normal cilium formation during early embryonic development.-Toriyama, M., Toriyama, M., Wallingford, J. B., Finnell, R. H. Folate-dependent methylation of septins governs ciliogenesis during neural tube closure.


Asunto(s)
Cilios/fisiología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Ácido Fólico/metabolismo , Tubo Neural/fisiología , Septinas/metabolismo , Animales , Dactinomicina/análogos & derivados , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células HEK293 , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Metilación , Ratones , Defectos del Tubo Neural/etiología , Plásmidos , Transducción de Señal , Xenopus/embriología
13.
PLoS Comput Biol ; 13(1): e1005307, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28135279

RESUMEN

A fundamental question in biology is how sharp boundaries of gene expression form precisely in spite of biological variation/noise. Numerous mechanisms position gene expression domains across fields of cells (e.g. morphogens), but how these domains are refined remains unclear. In some cases, domain boundaries sharpen through differential adhesion-mediated cell sorting. However, boundaries can also sharpen through cellular plasticity, with cell fate changes driven by up- or down-regulation of gene expression. In this context, we have argued that noise in gene expression can help cells transition to the correct fate. Here we investigate the efficacy of cell sorting, gene expression plasticity, and their combination in boundary sharpening using multi-scale, stochastic models. We focus on the formation of hindbrain segments (rhombomeres) in the developing zebrafish as an example, but the mechanisms investigated apply broadly to many tissues. Our results indicate that neither sorting nor plasticity is sufficient on its own to sharpen transition regions between different rhombomeres. Rather the two have complementary strengths and weaknesses, which synergize when combined to sharpen gene expression boundaries.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Modelos Biológicos , Modelos Estadísticos , Tubo Neural/citología , Tubo Neural/fisiología , Plasticidad Neuronal/fisiología , Animales , Adhesión Celular/fisiología , Movimiento Celular , Expresión Génica/fisiología , Morfogénesis , Rombencéfalo/citología , Rombencéfalo/fisiología , Relación Señal-Ruido , Procesos Estocásticos , Pez Cebra
14.
PLoS Biol ; 12(7): e1001907, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25026549

RESUMEN

A relatively small number of signals are responsible for the variety and pattern of cell types generated in developing embryos. In part this is achieved by exploiting differences in the concentration or duration of signaling to increase cellular diversity. In addition, however, changes in cellular competence-temporal shifts in the response of cells to a signal-contribute to the array of cell types generated. Here we investigate how these two mechanisms are combined in the vertebrate neural tube to increase the range of cell types and deliver spatial control over their location. We provide evidence that FGF signaling emanating from the posterior of the embryo controls a change in competence of neural progenitors to Shh and BMP, the two morphogens that are responsible for patterning the ventral and dorsal regions of the neural tube, respectively. Newly generated neural progenitors are exposed to FGF signaling, and this maintains the expression of the Nk1-class transcription factor Nkx1.2. Ventrally, this acts in combination with the Shh-induced transcription factor FoxA2 to specify floor plate cells and dorsally in combination with BMP signaling to induce neural crest cells. As development progresses, the intersection of FGF with BMP and Shh signals is interrupted by axis elongation, resulting in the loss of Nkx1.2 expression and allowing the induction of ventral and dorsal interneuron progenitors by Shh and BMP signaling to supervene. Hence a similar mechanism increases cell type diversity at both dorsal and ventral poles of the neural tube. Together these data reveal that tissue morphogenesis produces changes in the coincidence of signals acting along orthogonal axes of the neural tube and this is used to define spatial and temporal transitions in the competence of cells to interpret morphogen signaling.


Asunto(s)
Desarrollo Embrionario/fisiología , Tubo Neural/fisiología , Transducción de Señal/fisiología , Animales , Proteínas Morfogenéticas Óseas/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas Hedgehog/fisiología , Ratones , Tubo Neural/embriología , Proteínas Nucleares/biosíntesis , Factor Nuclear Tiroideo 1 , Factores de Transcripción/biosíntesis
15.
J Cell Sci ; 127(Pt 11): 2542-53, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24681784

RESUMEN

Rho family GTPases regulate many morphogenetic processes during vertebrate development including neural tube closure. Here we report a function for GEF-H1/Lfc/ArhGEF2, a RhoA-specific guanine nucleotide exchange factor that functions in neurulation in Xenopus embryos. Morpholino-mediated depletion of GEF-H1 resulted in severe neural tube defects, which were rescued by GEF-H1 RNA. Lineage tracing of GEF-H1 morphants at different developmental stages revealed abnormal cell intercalation and apical constriction, suggesting that GEF-H1 regulates these cell behaviors. Molecular marker analysis documented defects in myosin II light chain (MLC) phosphorylation, Rab11 and F-actin accumulation in GEF-H1-depleted cells. In gain-of-function studies, overexpressed GEF-H1 induced Rho-associated kinase-dependent ectopic apical constriction - marked by apical accumulation of phosphorylated MLC, γ-tubulin and F-actin in superficial ectoderm - and stimulated apical protrusive activity of deep ectoderm cells. Taken together, our observations newly identify functions of GEF-H1 in morphogenetic movements that lead to neural tube closure.


Asunto(s)
Actinas/metabolismo , Tubo Neural/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Xenopus , Proteínas de Unión al GTP rab/metabolismo , Animales , Comunicación Celular , Extensiones de la Superficie Celular/genética , Células Cultivadas , Constricción , Embrión no Mamífero , Morfogénesis/genética , Morfolinos/genética , Miosina Tipo II/metabolismo , Fosforilación , Transporte de Proteínas/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Quinasas Asociadas a rho/metabolismo
16.
Development ; 140(11): 2269-79, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23615280

RESUMEN

Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on 'in ovo' lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Melanocitos/metabolismo , Tubo Neural/embriología , Tubo Neural/fisiología , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Embrión de Pollo , Melaninas/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Microscopía Fluorescente , Receptor de Endotelina B/metabolismo , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Tiempo , Factores de Transcripción/metabolismo
17.
Hum Mol Genet ; 22(21): 4267-81, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23773994

RESUMEN

Low-density lipoprotein receptor related protein 6 (Lrp6) mutational effects on neurulation were examined using gain (Crooked tail, Lrp6(Cd)) and loss (Lrp6(-)) of function mouse lines. Two features often associated with canonical Wnt signaling, dorsal-ventral patterning and proliferation, were no different from wild-type (WT) in the Lrp6(Cd/Cd) neural tube. Lrp6(-/-) embryos showed reduced proliferation and subtle patterning changes in the neural folds. Cell polarity defects in both Lrp6(Cd/Cd) and Lrp6(-/-) cranial folds were indicated by cell shape, centrosome displacement and failure of F-actin and GTP-RhoA accumulation at the apical surface. Mouse embryonic fibroblasts (MEFs) derived from Lrp6(Cd/Cd) or Lrp6(-/-) embryos exhibited elevated and decreased RhoA basal activity levels, respectively. While ligand-independent activation of canonical Wnt signaling, bypassing Lrp-Frizzled receptors, did not activate RhoA, non-canonical Wnt5a stimulation of RhoA activity was impaired in Lrp6(-/-) MEFs. RhoA inhibition exacerbated NTDs in cultured Lrp6 knockout embryos compared with WT littermates. In contrast, a ROCK inhibitor rescued Lrp6(Cd/Cd) embryos from NTDs. Lrp6 co-immunoprecipitated with Disheveled-associated activator of morphogenesis 1 (DAAM1), a formin promoting GEF activity in Wnt signaling. Biochemical and cell biological data revealed intracellular accumulation of Lrp6(Cd) protein where interaction with DAAM1 could account for observed elevated RhoA activity. Conversely, null mutation that eliminates Lrp6 interaction with DAAM1 led to lower basal RhoA activity in Lrp6(-/-) embryos. These results indicate that Lrp6 mediates not only canonical Wnt signaling, but can also modulate non-canonical pathways involving RhoA-dependent mechanisms to impact neurulation, possibly through intracellular complexes with DAAM1.


Asunto(s)
Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/fisiología , Tubo Neural/embriología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Animales , Polaridad Celular , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Células 3T3 NIH , Cresta Neural/metabolismo , Tubo Neural/fisiología , Neurulación/genética , Embarazo , Proteínas Wnt/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
18.
Birth Defects Res A Clin Mol Teratol ; 103(1): 12-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24917297

RESUMEN

The primary cilium is critical in sonic hedgehog (Shh)-dependent ventral patterning of the vertebrate neural tube. Most mutants that cause disruption of the cilium result in decreased Shh signaling in the neural tube. In contrast, mutations in the intraflagellar complex A (IFT-A) and the tubby family protein, Tulp3, result in increased Shh signaling in the neural tube. Proteomic analysis of Tulp3-binding proteins first pointed to the role of the IFT-A complex in trafficking Tulp3 into the cilia. Tulp3 directs trafficking of rhodopsin family G-protein-coupled receptors (GPCRs) to the cilia, suggesting the role of a GPCR in mediating the paradoxical effects of the Tulp3/IFT-A complex in causing increased Shh signaling. Gpr161 has recently been identified as a Tulp3/IFT-A-regulated GPCR that localizes to the primary cilium. A null knock-out mouse model of Gpr161 phenocopies Tulp3 and IFT-A mutants, and causes increased Shh signaling throughout the neural tube. In the absence of Shh, the bifunctional Gli transcription factors are proteolytically processed into repressor forms in a protein kinase A (PKA) -dependent and cilium-dependent manner. Gpr161 activity results in increased cAMP levels in a Gαs -coupled manner, and determines processing of Gli3. Shh signaling also results in removal of Gpr161 from the cilia, suggesting that Gpr161 functions in a positive feedback loop in the Shh pathway. As PKA-null and Gαs mutant embryos also exhibit increased Shh signaling in the neural tube, Gpr161 is a strong candidate for a GPCR that regulates ciliary cAMP levels, and activates PKA in close proximity to the cilia.


Asunto(s)
Tipificación del Cuerpo/fisiología , Cilios/metabolismo , Flagelos/metabolismo , Tubo Neural/fisiología , Proteínas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Organogénesis , Transducción de Señal , Proteína Gli3 con Dedos de Zinc
19.
Dev Biol ; 374(2): 333-44, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23201575

RESUMEN

Differences between the left and right sides of the brain are present in many animal species. For instance, in humans the left cerebral hemisphere is largely responsible for language and tool use and the right for processing spatial information. Zebrafish have prominent left-right asymmetries in their epithalamus that have been associated with differential left and right eye use and navigational behavior. In wild-type (WT) zebrafish embryos, Nodal pathway genes are expressed in the left side of the pineal anlage. Shortly thereafter, a parapineal organ forms to the left of the pineal. The parapineal organ causes differences in gene expression, neuropil density, and connectivity of the left and right habenula nuclei. In embryos that have an open neural tube, such as embryos that are deficient in Nodal signaling or the cell adhesion protein N-cadherin, the left and right sides of the developing epithalamus remain separated from one another. We find that the brains of these embryos often become left isomerized: both sides of the brain develop morphology and gene expression patterns that are characteristic of the left side. However, other aspects of epithalamic development, such as differentiation of specific neuronal cell types, are intact. We propose that there is a mechanism in embryos with closed neural tubes that prevents both sides from developing like the left side. This mechanism fails when the two sides of the epithalamus are widely separated from one another, suggesting that it is dependent upon a signaling protein with limited range.


Asunto(s)
Epitálamo/fisiología , Tubo Neural/fisiología , Proteína Nodal/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Epitálamo/embriología , Epitálamo/metabolismo , Lateralidad Funcional/genética , Lateralidad Funcional/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Habénula/embriología , Habénula/metabolismo , Humanos , Hibridación in Situ , Mutación , Tubo Neural/embriología , Tubo Neural/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Glándula Pineal/embriología , Glándula Pineal/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Development ; 138(15): 3179-88, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21750029

RESUMEN

During neural tube closure, specialized regions called hinge points (HPs) display dynamic and polarized cell behaviors necessary for converting the neural plate into a neural tube. The molecular bases of such cell behaviors (e.g. apical constriction, basal nuclear migration) are poorly understood. We have identified a two-dimensional canonical BMP activity gradient in the chick neural plate that results in low and temporally pulsed BMP activity at the ventral midline/median hinge point (MHP). Using in vivo manipulations, high-resolution imaging and biochemical analyses, we show that BMP attenuation is necessary and sufficient for MHP formation. Conversely, BMP overexpression abolishes MHP formation and prevents neural tube closure. We provide evidence that BMP modulation directs neural tube closure via the regulation of apicobasal polarity. First, BMP blockade produces partially polarized neural cells, which retain contact with the apical and basal surfaces but where basolateral proteins (LGL) become apically localized and apical junctional proteins (PAR3, ZO1) become targeted to endosomes. Second, direct LGL misexpression induces ectopic HPs identical to those produced by noggin or dominant-negative BMPR1A. Third, BMP-dependent biochemical interactions occur between the PAR3-PAR6-aPKC polarity complex and phosphorylated SMAD5 at apical junctions. Finally, partially polarized cells normally occur at the MHP, their frequencies inversely correlated with the BMP activity gradient in the neural plate. We propose that spatiotemporal modulation of the two-dimensional BMP gradient transiently alters cell polarity in targeted neuronal cells. This ensures that the neural plate is flexible enough to be focally bent and shaped into a neural tube, while retaining overall epithelial integrity.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Polaridad Celular , Morfogénesis/fisiología , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/fisiología , Transducción de Señal/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular/fisiología , Embrión de Pollo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA