Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.885
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 626(7999): 549-554, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122822

RESUMEN

Tropical cyclones have far-reaching impacts on livelihoods and population health that often persist years after the event1-4. Characterizing the demographic and socioeconomic profile and the vulnerabilities of exposed populations is essential to assess health and other risks associated with future tropical cyclone events5. Estimates of exposure to tropical cyclones are often regional rather than global6 and do not consider population vulnerabilities7. Here we combine spatially resolved annual demographic estimates with tropical cyclone wind fields estimates to construct a global profile of the populations exposed to tropical cyclones between 2002 and 2019. We find that approximately 560 million people are exposed yearly and that the number of people exposed has increased across all cyclone intensities over the study period. The age distribution of those exposed has shifted away from children (less than 5 years old) and towards older people (more than 60 years old) in recent years compared with the early 2000s. Populations exposed to tropical cyclones are more socioeconomically deprived than those unexposed within the same country, and this relationship is more pronounced for people exposed to higher-intensity storms. By characterizing the patterns and vulnerabilities of exposed populations, our results can help identify mitigation strategies and assess the global burden and future risks of tropical cyclones.


Asunto(s)
Tormentas Ciclónicas , Anciano , Preescolar , Humanos , Persona de Mediana Edad , Tormentas Ciclónicas/estadística & datos numéricos , Viento , Distribución por Edad , Clima Tropical/efectos adversos , Factores Socioeconómicos , Demografía , Medición de Riesgo
2.
Nature ; 625(7993): 85-91, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172362

RESUMEN

The world's population increasingly relies on the ocean for food, energy production and global trade1-3, yet human activities at sea are not well quantified4,5. We combine satellite imagery, vessel GPS data and deep-learning models to map industrial vessel activities and offshore energy infrastructure across the world's coastal waters from 2017 to 2021. We find that 72-76% of the world's industrial fishing vessels are not publicly tracked, with much of that fishing taking place around South Asia, Southeast Asia and Africa. We also find that 21-30% of transport and energy vessel activity is missing from public tracking systems. Globally, fishing decreased by 12 ± 1% at the onset of the COVID-19 pandemic in 2020 and had not recovered to pre-pandemic levels by 2021. By contrast, transport and energy vessel activities were relatively unaffected during the same period. Offshore wind is growing rapidly, with most wind turbines confined to small areas of the ocean but surpassing the number of oil structures in 2021. Our map of ocean industrialization reveals changes in some of the most extensive and economically important human activities at sea.


Asunto(s)
Actividades Humanas , Industrias , Océanos y Mares , Imágenes Satelitales , Humanos , COVID-19/epidemiología , Aprendizaje Profundo , Fuentes Generadoras de Energía/estadística & datos numéricos , Abastecimiento de Alimentos/estadística & datos numéricos , Sistemas de Información Geográfica , Mapeo Geográfico , Actividades Humanas/economía , Actividades Humanas/estadística & datos numéricos , Caza/estadística & datos numéricos , Industrias/economía , Industrias/estadística & datos numéricos , Navíos/estadística & datos numéricos , Viento
3.
Nature ; 617(7961): 529-532, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37069264

RESUMEN

By accounting for most of the poleward atmospheric heat and moisture transport in the tropics, the Hadley circulation largely affects the latitudinal patterns of precipitation and temperature at low latitudes. To increase our preparednesses for human-induced climate change, it is thus critical to accurately assess the response of the Hadley circulation to anthropogenic emissions1-3. However, at present, there is a large uncertainty in recent Northern Hemisphere Hadley circulation strength changes4. Not only do climate models simulate a weakening of the circulation5, whereas atmospheric reanalyses mostly show an intensification of the circulation4-8, but atmospheric reanalyses were found to have artificial biases in the strength of the circulation5, resulting in unknown impacts of human emissions on recent Hadley circulation changes. Here we constrain the recent changes in the Hadley circulation using sea-level pressure measurements and show that, in agreement with the latest suite of climate models, the circulation has considerably weakened over recent decades. We further show that the weakening of the circulation is attributable to anthropogenic emissions, which increases our confidence in human-induced tropical climate change projections. Given the large climate impacts of the circulation at low latitudes, the recent human-induced weakening of the flow suggests wider consequences for the regional tropical-subtropical climate.


Asunto(s)
Atmósfera , Cambio Climático , Actividades Humanas , Clima Tropical , Viento , Humanos , Modelos Climáticos , Calor , Lluvia , Incertidumbre , Atmósfera/análisis , Presión Atmosférica , Sesgo
4.
Nature ; 603(7901): 427-433, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296847

RESUMEN

Plants cover a large fraction of the Earth's land mass despite most species having limited to no mobility. To transport their propagules, many plants have evolved mechanisms to disperse their seeds using the wind1-4. A dandelion seed, for example, has a bristly filament structure that decreases its terminal velocity and helps orient the seed as it wafts to the ground5. Inspired by this, we demonstrate wind dispersal of battery-free wireless sensing devices. Our millimetre-scale devices weigh 30 milligrams and are designed on a flexible substrate using programmable, off-the-shelf parts to enable scalability and flexibility for various sensing and computing applications. The system is powered using lightweight solar cells and an energy harvesting circuit that is robust to low and variable light conditions, and has a backscatter communication link that enables data transmission. To achieve the wide-area dispersal and upright landing that is necessary for solar power harvesting, we developed dandelion-inspired, thin-film porous structures that achieve a terminal velocity of 0.87 ± 0.02 metres per second and aerodynamic stability with a probability of upright landing of over 95%. Our results in outdoor environments demonstrate that these devices can travel 50-100 metres in gentle to moderate breeze. Finally, in natural systems, variance in individual seed morphology causes some seeds to fall closer and others to travel farther. We adopt a similar approach and show how we can modulate the porosity and diameter of the structures to achieve dispersal variation across devices.


Asunto(s)
Taraxacum , Viento , Porosidad , Semillas/anatomía & histología
5.
Nature ; 608(7923): 546-551, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948635

RESUMEN

Unprecedented modern rates of warming are expected to advance boreal forest into Arctic tundra1, thereby reducing albedo2-4, altering carbon cycling4 and further changing climate1-4, yet the patterns and processes of this biome shift remain unclear5. Climate warming, required for previous boreal advances6-17, is not sufficient by itself for modern range expansion of conifers forming forest-tundra ecotones5,12-15,17-20. No high-latitude population of conifers, the dominant North American Arctic treeline taxon, has previously been documented5 advancing at rates following the last glacial maximum (LGM)6-8. Here we describe a population of white spruce (Picea glauca) advancing at post-LGM rates7 across an Arctic basin distant from established treelines and provide evidence of mechanisms sustaining the advance. The population doubles each decade, with exponential radial growth in the main stems of individual trees correlating positively with July air temperature. Lateral branches in adults and terminal leaders in large juveniles grow almost twice as fast as those at established treelines. We conclude that surpassing temperature thresholds1,6-17, together with winter winds facilitating long-distance dispersal, deeper snowpack and increased soil nutrient availability promoting recruitment and growth, provides sufficient conditions for boreal forest advance. These observations enable forecast modelling with important insights into the environmental conditions converting tundra into forest.


Asunto(s)
Calentamiento Global , Picea , Taiga , Temperatura , Árboles , Tundra , Aclimatación , Regiones Árticas , Modelos Climáticos , Calentamiento Global/estadística & datos numéricos , Modelos Biológicos , Picea/crecimiento & desarrollo , Picea/metabolismo , Estaciones del Año , Nieve , Suelo/química , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Viento
6.
Nature ; 611(7937): 754-761, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352224

RESUMEN

Odour plumes in the wild are spatially complex and rapidly fluctuating structures carried by turbulent airflows1-4. To successfully navigate plumes in search of food and mates, insects must extract and integrate multiple features of the odour signal, including odour identity5, intensity6 and timing6-12. Effective navigation requires balancing these multiple streams of olfactory information and integrating them with other sensory inputs, including mechanosensory and visual cues9,12,13. Studies dating back a century have indicated that, of these many sensory inputs, the wind provides the main directional cue in turbulent plumes, leading to the longstanding model of insect odour navigation as odour-elicited upwind motion6,8-12,14,15. Here we show that Drosophila melanogaster shape their navigational decisions using an additional directional cue-the direction of motion of odours-which they detect using temporal correlations in the odour signal between their two antennae. Using a high-resolution virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely walking flies, we demonstrate that such odour-direction sensing involves algorithms analogous to those in visual-direction sensing16. Combining simulations, theory and experiments, we show that odour motion contains valuable directional information that is absent from the airflow alone, and that both Drosophila and virtual agents are aided by that information in navigating naturalistic plumes. The generality of our findings suggests that odour-direction sensing may exist throughout the animal kingdom and could improve olfactory robot navigation in uncertain environments.


Asunto(s)
Drosophila melanogaster , Percepción de Movimiento , Odorantes , Percepción Olfatoria , Navegación Espacial , Viento , Animales , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Odorantes/análisis , Navegación Espacial/fisiología , Percepción de Movimiento/fisiología , Factores de Tiempo , Percepción Olfatoria/fisiología , Antenas de Artrópodos/fisiología , Señales (Psicología) , Caminata/fisiología
7.
Immunol Rev ; 322(1): 233-243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38014621

RESUMEN

Common variable immunodeficiency (CVID) is a heterogenous disease category created to distinguish late-onset antibody deficiencies from early-onset diseases like agammaglobulinemia or more expansively dysfunctional combined immunodeficiencies. Opinions vary on which affected patients should receive a CVID diagnosis which confuses clinicians and erects reproducibility barriers for researchers. Most experts agree that CVID's most indeliable feature is defective germinal center (GC) production of isotype-switched, affinity-maturated antibodies. Here, we review the biological factors contributing to CVID-associated GC dysfunction including genetic, epigenetic, tolerogenic, microbiome, and regulatory abnormalities. We also discuss the consequences of these biological phenomena to the development of non-infectious disease complications. Finally, we opine on topics and lines of investigation we think hold promise for expanding our mechanistic understanding of this protean condition and for improving the lives of affected patients.


Asunto(s)
Inmunodeficiencia Variable Común , Humanos , Inmunodeficiencia Variable Común/genética , Linfocitos B , Reproducibilidad de los Resultados , Viento , Centro Germinal
8.
Nature ; 599(7886): 611-615, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34819681

RESUMEN

A band of intense rainfall extends more than 1,000 km along Mexico's west coast during Northern Hemisphere summer, constituting the core of the North American monsoon1,2. As in other tropical monsoons, this rainfall maximum is commonly thought to be thermally forced by emission of heat from land and elevated terrain into the overlying atmosphere3-5, but a clear understanding of the fundamental mechanism governing this monsoon is lacking. Here we show that the core North American monsoon is generated when Mexico's Sierra Madre mountains deflect the extratropical jet stream towards the Equator, mechanically forcing eastward, upslope flow that lifts warm and moist air to produce convective rainfall. These findings are based on analyses of dynamic and thermodynamic structures in observations, global climate model integrations and adiabatic stationary wave solutions. Land surface heat fluxes do precondition the atmosphere for convection, particularly in summer afternoons, but these heat fluxes alone are insufficient for producing the observed rainfall maximum. Our results indicate that the core North American monsoon should be understood as convectively enhanced orographic rainfall in a mechanically forced stationary wave, not as a classic, thermally forced tropical monsoon. This has implications for the response of the North American monsoon to past and future global climate change, making trends in jet stream interactions with orography of central importance.


Asunto(s)
Altitud , Atmósfera , Calor , Lluvia , Estaciones del Año , Clima Tropical , México , Viento
9.
Nature ; 598(7881): 457-461, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34671138

RESUMEN

Ocean dynamics in the equatorial Pacific drive tropical climate patterns that affect marine and terrestrial ecosystems worldwide. How this region will respond to global warming has profound implications for global climate, economic stability and ecosystem health. As a result, numerous studies have investigated equatorial Pacific dynamics during the Pliocene (5.3-2.6 million years ago) and late Miocene (around 6 million years ago) as an analogue for the future behaviour of the region under global warming1-12. Palaeoceanographic records from this time present an apparent paradox with proxy evidence of a reduced east-west sea surface temperature gradient along the equatorial Pacific1,3,7,8-indicative of reduced wind-driven upwelling-conflicting with evidence of enhanced biological productivity in the east Pacific13-15 that typically results from stronger upwelling. Here we reconcile these observations by providing new evidence for a radically different-from-modern circulation regime in the early Pliocene/late Miocene16 that results in older, more acidic and more nutrient-rich water reaching the equatorial Pacific. These results provide a mechanism for enhanced productivity in the early Pliocene/late Miocene east Pacific even in the presence of weaker wind-driven upwelling. Our findings shed new light on equatorial Pacific dynamics and help to constrain the potential changes they will undergo in the near future, given that the Earth is expected to reach Pliocene-like levels of warming in the next century.


Asunto(s)
Ecosistema , Agua de Mar/química , Temperatura , Foraminíferos/clasificación , Foraminíferos/aislamiento & purificación , Historia Antigua , Concentración de Iones de Hidrógeno , Océano Pacífico , Plancton/clasificación , Plancton/aislamiento & purificación , Movimientos del Agua , Viento
10.
Nature ; 589(7842): 408-414, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33106670

RESUMEN

Precipitation and atmospheric circulation are the coupled processes through which tropical ocean surface temperatures drive global weather and climate1-5. Local sea surface warming tends to increase precipitation, but this local control is difficult to disentangle from remote effects of conditions elsewhere. As an example of such a remote effect, El Niño Southern Oscillation (ENSO) events in the equatorial Pacific Ocean alter precipitation across the tropics. Atmospheric circulations associated with tropical precipitation are predominantly deep, extending up to the tropopause. Shallow atmospheric circulations6-8 affecting the lower troposphere also occur, but the importance of their interaction with precipitation is unclear. Uncertainty in precipitation observations9,10 and limited observations of shallow circulations11 further obstruct our understanding of the ocean's influence on weather and climate. Despite decades of research, persistent biases remain in many numerical model simulations12-18, including excessively wide tropical rainbands14,18, the 'double-intertropical convergence zone problem'12,16,17 and too-weak responses to ENSO15. These biases demonstrate gaps in our understanding, reducing confidence in forecasts and projections. Here we use observations to show that seasonal tropical precipitation has a high sensitivity to local sea surface temperature. Our best observational estimate is an 80 per cent change in precipitation for every gram per kilogram change in the saturation specific humidity (itself a function of the sea surface temperature). This observed sensitivity is higher than in 43 of the 47 climate models studied, and is associated with strong shallow circulations. Models with more realistic (closer to 80%) sensitivity have smaller biases across a wide range of metrics. Our results apply to both temporal and spatial variation, over regions where climatological precipitation is about one millimetre per day or more. Our analyses of multiple independent observations, physical constraints and model data underpin these findings. The spread in model behaviour is further linked to differences in shallow convection, thus providing a focus for accelerated research to improve seasonal forecasts through multidecadal climate projections.


Asunto(s)
Océanos y Mares , Lluvia , Temperatura , Clima Tropical , Atmósfera/análisis , Atmósfera/química , Modelos Teóricos , Reproducibilidad de los Resultados , Comunicaciones por Satélite , Incertidumbre , Movimientos del Agua , Viento
11.
Nature ; 597(7877): 503-510, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34552257

RESUMEN

Large, distributed collections of miniaturized, wireless electronic devices1,2 may form the basis of future systems for environmental monitoring3, population surveillance4, disease management5 and other applications that demand coverage over expansive spatial scales. Aerial schemes to distribute the components for such networks are required, and-inspired by wind-dispersed seeds6-we examined passive structures designed for controlled, unpowered flight across natural environments or city settings. Techniques in mechanically guided assembly of three-dimensional (3D) mesostructures7-9 provide access to miniature, 3D fliers optimized for such purposes, in processes that align with the most sophisticated production techniques for electronic, optoelectronic, microfluidic and microelectromechanical technologies. Here we demonstrate a range of 3D macro-, meso- and microscale fliers produced in this manner, including those that incorporate active electronic and colorimetric payloads. Analytical, computational and experimental studies of the aerodynamics of high-performance structures of this type establish a set of fundamental considerations in bio-inspired design, with a focus on 3D fliers that exhibit controlled rotational kinematics and low terminal velocities. An approach that represents these complex 3D structures as discrete numbers of blades captures the essential physics in simple, analytical scaling forms, validated by computational and experimental results. Battery-free, wireless devices and colorimetric sensors for environmental measurements provide simple examples of a wide spectrum of applications of these unusual concepts.


Asunto(s)
Biomimética , Equipos y Suministros Eléctricos , Miniaturización/instrumentación , Semillas , Viento , Tecnología Inalámbrica/instrumentación , Colorimetría , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Fenómenos Mecánicos , Microfluídica , Vigilancia de la Población/métodos , Rotación
12.
Proc Natl Acad Sci U S A ; 121(23): e2312851121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771864

RESUMEN

The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.


Asunto(s)
Aves , Vuelo Animal , Viento , Animales , Vuelo Animal/fisiología , Aves/fisiología , Orientación/fisiología , Fenómenos de Retorno al Lugar Habitual/fisiología , Orientación Espacial/fisiología , Migración Animal/fisiología
13.
Proc Natl Acad Sci U S A ; 121(18): e2317646121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648486

RESUMEN

Long-distance migrations of insects contribute to ecosystem functioning but also have important economic impacts when the migrants are pests or provide ecosystem services. We combined radar monitoring, aerial sampling, and searchlight trapping, to quantify the annual pattern of nocturnal insect migration above the densely populated agricultural lands of East China. A total of ~9.3 trillion nocturnal insect migrants (15,000 t of biomass), predominantly Lepidoptera, Hemiptera, and Diptera, including many crop pests and disease vectors, fly at heights up to 1 km above this 600 km-wide region every year. Larger migrants (>10 mg) exhibited seasonal reversal of movement directions, comprising northward expansion during spring and summer, followed by southward movements during fall. This north-south transfer was not balanced, however, with southward movement in fall 0.66× that of northward movement in spring and summer. Spring and summer migrations were strongest when the wind had a northward component, while in fall, stronger movements occurred on winds that allowed movement with a southward component; heading directions of larger insects were generally close to the track direction. These findings indicate adaptations leading to movement in seasonally favorable directions. We compare our results from China with similar studies in Europe and North America and conclude that ecological patterns and behavioral adaptations are similar across the Northern Hemisphere. The predominance of pests among these nocturnal migrants has severe implications for food security and grower prosperity throughout this heavily populated region, and knowledge of their migrations is potentially valuable for forecasting pest impacts and planning timely management actions.


Asunto(s)
Altitud , Migración Animal , Estaciones del Año , Animales , China , Migración Animal/fisiología , Agricultura/métodos , Ecosistema , Insectos/fisiología , Viento , Vuelo Animal/fisiología
14.
Nature ; 579(7800): 544-548, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214266

RESUMEN

Observations show robust near-surface trends in Southern Hemisphere tropospheric circulation towards the end of the twentieth century, including a poleward shift in the mid-latitude jet1,2, a positive trend in the Southern Annular Mode1,3-6 and an expansion of the Hadley cell7,8. It has been established that these trends were driven by ozone depletion in the Antarctic stratosphere due to emissions of ozone-depleting substances9-11. Here we show that these widely reported circulation trends paused, or slightly reversed, around the year 2000. Using a pattern-based detection and attribution analysis of atmospheric zonal wind, we show that the pause in circulation trends is forced by human activities, and has not occurred owing only to internal or natural variability of the climate system. Furthermore, we demonstrate that stratospheric ozone recovery, resulting from the Montreal Protocol, is the key driver of the pause. Because pre-2000 circulation trends have affected precipitation12-14, and potentially ocean circulation and salinity15-17, we anticipate that a pause in these trends will have wider impacts on the Earth system. Signatures of the effects of the Montreal Protocol and the associated stratospheric ozone recovery might therefore manifest, or have already manifested, in other aspects of the Earth system.


Asunto(s)
Atmósfera/química , Política Ambiental/legislación & jurisprudencia , Cooperación Internacional/legislación & jurisprudencia , Ozono/análisis , Viento , Regiones Antárticas , Actividades Humanas/legislación & jurisprudencia , Océanos y Mares , Lluvia , Salinidad , Movimientos del Agua
15.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364992

RESUMEN

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Viento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligasas/metabolismo , Calmodulina/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(3): e2212105120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623184

RESUMEN

Windthrow, or the uprooting of trees by extreme wind gusts, is a natural forest disturbance that creates microhabitats, turns over soil, alters hydrology, and removes carbon from the above-ground carbon stock. Long recurrence intervals between extreme wind events, however, make direct observations of windthrow rare, challenging our understanding of this important disturbance process. To overcome this difficulty, we present an approach that uses the geomorphic record of hillslope topographic roughness as a proxy for the occurrence of windthrow. The approach produces a probability function of the number of annual windthrow events for a maximum wind speed, allowing us to explore how windthrow or tree strengths may change due to shifting wind climates. Slight changes to extreme wind speeds may drive comparatively large changes in windthrow production rates or force trees to respond and change the distribution. We also highlight that topographic roughness has the potential to serve as an important archive of extreme wind speeds.


Asunto(s)
Bosques , Viento , Clima , Carbono
17.
Proc Natl Acad Sci U S A ; 120(46): e2312451120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37934819

RESUMEN

The Amazon rainforests have been undergoing unprecedented levels of human-induced disturbances. In addition to local impacts, such changes are likely to cascade following the eastern-western atmospheric flow generated by trade winds. We propose a model of spatial and temporal interactions created by this flow to estimate the spread of effects from local disturbances to downwind locations along atmospheric trajectories. The spatial component captures cascading effects propagated by neighboring regions, while the temporal component captures the persistence of local disturbances. Importantly, all these network effects can be described by a single matrix, acting as a spatial multiplier that amplifies local forest disturbances. This matrix holds practical implications for policymakers as they can use it to easily map where the damage of an initial forest disturbance is amplified and propagated to. We identify regions that are likely to cause the largest impact throughout the basin and those that are the most vulnerable to shocks caused by remote deforestation. On average, the presence of cascading effects mediated by winds in the Amazon doubles the impact of an initial damage. However, there is heterogeneity in this impact. While damage in some regions does not propagate, in others, amplification can reach 250%. Since we only account for spillovers mediated by winds, our multiplier of 2 should be seen as a lower bound.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Humanos , Bosque Lluvioso , Viento
18.
Proc Natl Acad Sci U S A ; 120(42): e2306317120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812699

RESUMEN

Space weather, including solar storms, can impact Earth by disturbing the geomagnetic field. Despite the known dependence of birds and other animals on geomagnetic cues for successful seasonal migrations, the potential effects of space weather on organisms that use Earth's magnetic field for navigation have received little study. We tested whether space weather geomagnetic disturbances are associated with disruptions to bird migration at a macroecological scale. We leveraged long-term radar data to characterize the nightly migration dynamics of the nocturnally migrating North American avifauna over 22 y. We then used concurrent magnetometer data to develop a local magnetic disturbance index associated with each radar station (ΔBmax), facilitating spatiotemporally explicit analyses of the relationship between migration and geomagnetic disturbance. After controlling for effects of atmospheric weather and spatiotemporal patterns, we found a 9 to 17% decrease in migration intensity in both spring and fall during severe space weather events. During fall migration, we also found evidence for decreases in effort flying against the wind, which may represent a depression of active navigation such that birds drift more with the wind during geomagnetic disturbances. Effort flying against the wind in the fall was most reduced under both overcast conditions and high geomagnetic disturbance, suggesting that a combination of obscured celestial cues and magnetic disturbance may disrupt navigation. Collectively, our results provide evidence for community-wide avifaunal responses to geomagnetic disturbances driven by space weather during nocturnal migration.


Asunto(s)
Migración Animal , Tiempo (Meteorología) , Animales , Migración Animal/fisiología , Aves/fisiología , Estaciones del Año , Viento
19.
Proc Natl Acad Sci U S A ; 120(42): e2218679120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812719

RESUMEN

The ways in which seabirds navigate over very large spatial scales remain poorly understood. While olfactory and visual information can provide guidance over short distances, their range is often limited to 100s km, far below the navigational capacity of wide-ranging animals such as albatrosses. Infrasound is a form of low-frequency sound that propagates for 1,000s km in the atmosphere. In marine habitats, its association with storms and ocean surface waves could in effect make it a useful cue for anticipating environmental conditions that favor or hinder flight or be associated with profitable foraging patches. However, behavioral responses of wild birds to infrasound remain untested. Here, we explored whether wandering albatrosses, Diomedea exulans, respond to microbarom infrasound at sea. We used Global Positioning System tracks of 89 free-ranging albatrosses in combination with acoustic modeling to investigate whether albatrosses preferentially orientate toward areas of 'loud' microbarom infrasound on their foraging trips. We found that in addition to responding to winds encountered in situ, albatrosses moved toward source regions associated with higher sound pressure levels. These findings suggest that albatrosses may be responding to long-range infrasonic cues. As albatrosses depend on winds and waves for soaring flight, infrasonic cues may help albatrosses to identify environmental conditions that allow them to energetically optimize flight over long distances. Our results shed light on one of the great unresolved mysteries in nature, navigation in seemingly featureless ocean environments.


Asunto(s)
Aves , Señales (Psicología) , Animales , Aves/fisiología , Viento , Olfato , Sonido
20.
Proc Natl Acad Sci U S A ; 120(24): e2301760120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279270

RESUMEN

Humans are unique among mammals in having a functionally naked body with a hair-covered scalp. Scalp hair is exceptionally variable across populations within Homo sapiens. Neither the function of human scalp hair nor the consequences of variation in its morphology have been studied within an evolutionary framework. A thermoregulatory role for human scalp hair has been previously suggested. Here, we present experimental evidence on the potential evolutionary function of human scalp hair and variation in its morphology. Using a thermal manikin and human hair wigs at different wind speeds in a temperature and humidity-controlled environment, with and without simulated solar radiation, we collected data on the convective, radiative, and evaporative heat fluxes to and from the scalp in relation to properties of a range of hair morphologies, as well as a naked scalp. We find evidence for a significant reduction in solar radiation influx to the scalp in the presence of hair. Maximal evaporative heat loss potential from the scalp is reduced by the presence of hair, but the amount of sweat required on the scalp to balance the incoming solar heat (i.e., zero heat gain) is reduced in the presence of hair. Particularly, we find that hair that is more tightly curled offers increased protection against heat gain from solar radiation.


Asunto(s)
Regulación de la Temperatura Corporal , Cabello , Cuero Cabelludo , Cabello/anatomía & histología , Cabello/fisiología , Regulación de la Temperatura Corporal/fisiología , Humanos , Evolución Biológica , Agua , Viento , Energía Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA