Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 95(19): e0101921, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34287044

RESUMEN

Based on our previous studies, we show that the M gene is critical for the replication and pathogenicity of the chimeric H17 bat influenza virus (Bat09:mH1mN1) by replacing the bat M gene with those from human and swine influenza A viruses. However, the key amino acids of the M1 and/or M2 proteins that are responsible for virus replication and pathogenicity remain unknown. In this study, replacement of the PR8 M gene with the Eurasian avian-like M gene from the A/California/04/2009 pandemic H1N1 virus significantly decreased viral replication in both mammalian and avian cells in the background of the chimeric H17 bat influenza virus. Further studies revealed that M1 was more crucial for viral growth and pathogenicity than M2 and that the amino acid residues M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of the M1 and M2 proteins identified in this study might be important for influenza virus surveillance and could be used to produce live attenuated vaccines in the future. IMPORTANCE The M1 and M2 proteins influence the morphology, replication, virulence, and transmissibility of influenza viruses. Although a few key residues in the M1 and M2 proteins have been identified, whether other residues of the M1 and M2 proteins are involved in viral replication and pathogenicity remains to be discovered. In the background of the chimeric H17 bat influenza virus, the Eurasian avian-like M gene from the A/California/04/2009 virus significantly decreased viral growth in mammalian and avian cells. Further study showed that M1 was implicated more than M2 in viral growth and pathogenicity in vitro and in vivo and that the key amino acid residues M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of the M1 and M2 proteins could be used for influenza virus surveillance and live attenuated vaccine applications in the future. These findings provide important contributions to knowledge of the genetic basis of the virulence of influenza viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Orthomyxoviridae/crecimiento & desarrollo , Orthomyxoviridae/patogenicidad , Proteínas de la Matriz Viral/metabolismo , Aminoácidos/metabolismo , Animales , Línea Celular , Quirópteros , Genes Virales , Humanos , Pulmón/virología , Ratones , Orthomyxoviridae/genética , Virus Reordenados/genética , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/patogenicidad , Cornetes Nasales/virología , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Virulencia , Replicación Viral
2.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32817214

RESUMEN

The "shock-and-kill" human immunodeficiency virus type 1 (HIV-1) cure strategy involves latency reversal followed by immune-mediated clearance of infected cells. We have previously shown that activation of the noncanonical NF-κB pathway using an inhibitor of apoptosis (IAP), AZD5582, reverses HIV/simian immunodeficiency virus (SIV) latency. Here, we combined AZD5582 with bispecific HIVxCD3 DART molecules to determine the impact of this approach on persistence. Rhesus macaques (RMs) (n = 13) were infected with simian/human immunodeficiency virus SHIV.C.CH505.375H.dCT, and triple antiretroviral therapy (ART) was initiated after 16 weeks. After 42 weeks of ART, 8 RMs received a cocktail of 3 HIVxCD3 DART molecules having human A32, 7B2, or PGT145 anti-HIV-1 envelope (Env) specificities paired with a human anti-CD3 specificity that is rhesus cross-reactive. The remaining 5 ART-suppressed RMs served as controls. For 10 weeks, a DART molecule cocktail was administered weekly (each molecule at 1 mg/kg of body weight), followed 2 days later by AZD5582 (0.1 mg/kg). DART molecule serum concentrations were well above those considered adequate for redirected killing activity against Env-expressing target cells but began to decline after 3 to 6 weekly doses, coincident with the development of antidrug antibodies (ADAs) against each of the DART molecules. The combination of AZD5582 and the DART molecule cocktail did not increase on-ART viremia or cell-associated SHIV RNA in CD4+ T cells and did not reduce the viral reservoir size in animals on ART. The lack of latency reversal in the model used in this study may be related to low pre-ART viral loads (median, <105 copies/ml) and low preintervention reservoir sizes (median, <102 SHIV DNA copies/million blood CD4+ T cells). Future studies to assess the efficacy of Env-targeting DART molecules or other clearance agents to reduce viral reservoirs after latency reversal may be more suited to models that better minimize immunogenicity and have a greater viral burden.IMPORTANCE The most significant barrier to an HIV-1 cure is the existence of the latently infected viral reservoir that gives rise to rebound viremia upon cessation of ART. Here, we tested a novel combination approach of latency reversal with AZD5582 and clearance with bispecific HIVxCD3 DART molecules in SHIV.C.CH505-infected, ART-suppressed rhesus macaques. We demonstrate that the DART molecules were not capable of clearing infected cells in vivo, attributed to the lack of quantifiable latency reversal in this model with low levels of persistent SHIV DNA prior to intervention as well as DART molecule immunogenicity.


Asunto(s)
Alquinos/farmacología , Antirretrovirales/farmacología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Infecciones por VIH/tratamiento farmacológico , Oligopéptidos/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Viremia/tratamiento farmacológico , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Femenino , Regulación de la Expresión Génica , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/inmunología , Macaca mulatta , FN-kappa B/genética , FN-kappa B/inmunología , Virus Reordenados/efectos de los fármacos , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Virus de la Inmunodeficiencia de los Simios/inmunología , Carga Viral/efectos de los fármacos , Viremia/genética , Viremia/inmunología , Viremia/virología , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
3.
BMC Vet Res ; 17(1): 80, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588843

RESUMEN

BACKGROUND: Genotype S H9N2 viruses have become predominant in poultry in China since 2010. These viruses frequently donate their whole internal gene segments to other emerging influenza A subtypes such as the novel H7N9, H5N6, and H10N8 viruses. We recently reported that the PB2 and M genes of the genotype S H9N2 virus, which are derived from the G1-like virus, enhance the fitness of H5Nx and H7N9 avian influenza viruses in chickens and mice. However, whether the G1-like PB2 and M genes are preferentially incorporated into progeny virions during virus reassortment remains unclear; whether the G1-like PB2 and M genes from different subtypes are differentially incorporated into new virion progeny remains unknown. RESULTS: We conducted a reassortment experiment with the use of a H7N9 virus as the backbone and found that G1-like M/PB2 genes were preferentially incorporated in progeny virions over F/98-like M/PB2 genes. Importantly, the preference varied among G1-like M/PB2 genes of different subtypes. When competing with F/98-like M/PB2 genes during reassortment, both the M and PB2 genes from the H7N9 virus GD15 showed an advantage, whereas only the PB2 gene from the H9N2 virus CZ73 and the M gene from the H9N2 virus AH320 displayed the advantage. CONCLUSION: Our findings highlight the preferential and variable advantages of H9N2-derived G1-like M and PB2 genes in incorporating them into H7N9 progeny virions over SH14-derived F/98-like M/PB2 genes.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Virus Reordenados/genética , Animales , Embrión de Pollo , Coinfección , Perros , Genotipo , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Virus Reordenados/crecimiento & desarrollo , Proteínas de la Matriz Viral/genética , Virión
4.
J Virol ; 93(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31270231

RESUMEN

The potential avian influenza pandemic remains a threat to public health, as the avian-origin influenza A(H7N9) virus has caused more than 1,560 laboratory-confirmed human infections since 2013, with nearly 40% mortality. Development of low-pathogenic candidate vaccine viruses (CVVs) for vaccine production is essential for pandemic preparedness. However, the suboptimal growth of CVVs in mammalian cells and chicken eggs is often a challenge. By introducing a single adaptive substitution, G218E, into the hemagglutinin (HA), we generated reassortant A(H7N9)-G218E CVVs that were characterized by significantly enhanced growth in both cells and eggs. These G218E CVVs retained the original antigenicity, as determined by a hemagglutination inhibition assay, and effectively protected ferrets from lethal challenge with the highly pathogenic parental virus. We found that the suboptimal replication of the parental H7 CVVs was associated with impeded progeny virus release as a result of strong HA receptor binding relative to weak neuraminidase (NA) cleavage of receptors. In contrast, the G218E-mediated growth improvement was attributed to relatively balanced HA and NA functions, resulted from reduced HA binding to both human- and avian-type receptors, and thus facilitated NA-mediated virus release. Our findings revealed that a single amino acid mutation at residue 218 of the HA improved the growth of A(H7N9) influenza virus by balancing HA and NA functions, shedding light on an alternative approach for optimizing certain influenza CVVs.IMPORTANCE The circulating avian influenza A(H7N9) has caused recurrent epidemic waves with high mortality in China since 2013, in which the alarming fifth wave crossing 2016 and 2017 was highlighted by a large number of human infections and the emergence of highly pathogenic avian influenza (HPAI) A(H7N9) strains in human cases. We generated low-pathogenic reassortant CVVs derived from the emerging A(H7N9) with improved virus replication and protein yield in both MDCK cells and eggs by introducing a single substitution, G218E, into HA, which was associated with reducing HA receptor binding and subsequently balancing HA-NA functions. The in vitro and in vivo experiments demonstrated comparable antigenicity of the G218E CVVs with that of their wild-type (WT) counterparts, and both the WT and the G218E CVVs fully protected ferrets from parental HPAI virus challenge. With high yield traits and the anticipated antigenicity, the G218E CVVs should benefit preparedness against the threat of an A(H7N9) influenza pandemic.


Asunto(s)
Sustitución de Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H7N9 del Virus de la Influenza A/crecimiento & desarrollo , Vacunas contra la Influenza/genética , Proteínas Mutantes/metabolismo , Virus Reordenados/crecimiento & desarrollo , Adaptación Biológica , Animales , Embrión de Pollo , Modelos Animales de Enfermedad , Perros , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Células de Riñón Canino Madin Darby , Proteínas Mutantes/genética , Infecciones por Orthomyxoviridae/prevención & control , Virus Reordenados/genética , Análisis de Supervivencia , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Acoplamiento Viral , Replicación Viral
5.
J Gen Virol ; 100(7): 1079-1092, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31169484

RESUMEN

Candidate vaccine viruses (CVVs) for seasonal influenza A virus are made by reassortment of the antigenic virus with an egg-adapted strain, typically A/Puerto Rico/8/34 (PR8). Many 2009 A(H1N1) pandemic (pdm09) high-growth reassortants (HGRs) selected this way contain pdm09 segment 2 in addition to the antigenic genes. To investigate this, we made CVV mimics by reverse genetics (RG) that were either 6 : 2 or 5 : 3 reassortants between PR8 and two pdm09 strains, A/California/7/2009 (Cal7) and A/England/195/2009, differing in the source of segment 2. The 5 : 3 viruses replicated better in MDCK-SIAT1 cells than the 6 : 2 viruses, but the 6 : 2 CVVs gave higher haemagglutinin (HA) antigen yields from eggs. This unexpected phenomenon reflected temperature sensitivity conferred by pdm09 segment 2, as the egg HA yields of the 5 : 3 viruses improved substantially when viruses were grown at 35 °C compared with 37.5 °C, whereas the 6 : 2 virus yields did not. However, the authentic 5 : 3 pdm09 HGRs, X-179A and X-181, were not markedly temperature sensitive despite their PB1 sequences being identical to that of Cal7, suggesting compensatory mutations elsewhere in the genome. Sequence comparisons of the PR8-derived backbone genes identified polymorphisms in PB2, NP, NS1 and NS2. Of these, PB2 N701D affected the temperature dependence of viral transcription and, furthermore, improved and drastically reduced the temperature sensitivity of the HA yield from the 5 : 3 CVV mimic. We conclude that the HA yield of pdm09 CVVs can be affected by an epistatic interaction between PR8 PB2 and pdm09 PB1, but that this can be minimized by ensuring that the backbones used for vaccine manufacture in eggs contain PB2 701D.


Asunto(s)
Epistasis Genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Gripe Humana/virología , Proteínas Virales/genética , Animales , Embrión de Pollo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/metabolismo , Virus Reordenados/genética , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/metabolismo , Temperatura , Proteínas Virales/metabolismo
6.
J Virol ; 91(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28053101

RESUMEN

Vaccination is considered the most effective preventive means for influenza control. The development of a master virus with high growth and genetic stability, which may be used for the preparation of vaccine viruses by gene reassortment, is crucial for the enhancement of vaccine performance and efficiency of production. Here, we describe the generation of a high-fidelity and high-growth influenza vaccine master virus strain with a single V43I amino acid change in the PB1 polymerase of the high-growth A/Puerto Rico/8/1934 (PR8) master virus. The PB1-V43I mutation was introduced to increase replication fidelity in order to design an H1N1 vaccine strain with a low error rate. The PR8-PB1-V43I virus exhibited good replication compared with that of the parent PR8 virus. In order to compare the efficiency of egg adaptation and the occurrence of gene mutations leading to antigenic alterations, we constructed 6:2 genetic reassortant viruses between the A(H1N1)pdm09 and the PR8-PB1-V43I viruses; hemagglutinin (HA) and neuraminidase (NA) were from the A(H1N1)pdm09 virus, and the other genes were from the PR8 virus. Mutations responsible for egg adaptation mutations occurred in the HA of the PB1-V43I reassortant virus during serial egg passages; however, in contrast, antigenic mutations were introduced into the HA gene of the 6:2 reassortant virus possessing the wild-type PB1. This study shows that the mutant PR8 virus possessing the PB1 polymerase with the V43I substitution may be utilized as a master virus for the generation of high-growth vaccine viruses with high polymerase fidelity, low error rates of gene replication, and reduced antigenic diversity during virus propagation in eggs for vaccine production.IMPORTANCE Vaccination represents the most effective prophylactic option against influenza. The threat of emergence of influenza pandemics necessitates the ability to generate vaccine viruses rapidly. However, as the influenza virus exhibits a high mutation rate, vaccines must be updated to ensure a good match of the HA and NA antigens between the vaccine and the circulating strain. Here, we generated a genetically stable master virus of the A/Puerto Rico/8/1934 (H1N1) backbone encoding an engineered high-fidelity viral polymerase. Importantly, following the application of the high-fidelity PR8 backbone, no mutation resulting in antigenic change was introduced into the HA gene during propagation of the A(H1N1)pdm09 candidate vaccine virus. The low error rate of the present vaccine virus should decrease the risk of generating mutant viruses with increased virulence. Therefore, our findings are expected to be useful for the development of prepandemic vaccines and live attenuated vaccines with higher safety than that of the present candidate vaccines.


Asunto(s)
Antígenos Virales/genética , Virus de la Influenza A/crecimiento & desarrollo , Vacunas contra la Influenza/inmunología , Virus Reordenados/crecimiento & desarrollo , Sustitución de Aminoácidos , Antígenos Virales/inmunología , Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Mutación Puntual , Virus Reordenados/genética , Tecnología Farmacéutica/métodos , Proteínas Virales/genética , Virología/métodos
7.
J Virol ; 90(3): 1439-43, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581988

RESUMEN

UNLABELLED: The genetic diversity of rotavirus A (RVA) strains is facilitated in part by genetic reassortment. Although this process of genome segment exchange has been reported frequently among mammalian RVAs, it remained unknown if mammalian RVAs also could package genome segments from avian RVA strains. We generated a simian RVA strain SA11 reassortant containing the VP4 gene of chicken RVA strain 02V0002G3. To achieve this, we transfected BSR5/T7 cells with a T7 polymerase-driven VP4-encoding plasmid, infected the cells with a temperature-sensitive SA11 VP4 mutant, and selected the recombinant virus by increasing the temperature. The reassortant virus could be stably passaged and exhibited cytopathic effects in MA-104 cells, but it replicated less efficiently than both parental viruses. Our results show that avian and mammalian rotaviruses can exchange genome segments, resulting in replication-competent reassortants with new genomic and antigenic features. IMPORTANCE: This study shows that rotaviruses of mammals can package genome segments from rotaviruses of birds. The genetic diversity of rotaviruses could be broadened by this process, which might be important for their antigenic variability. The reverse genetics system applied in the study could be useful for targeted generation and subsequent characterization of distinct rotavirus reassortant strains.


Asunto(s)
Virus Helper/genética , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/genética , Genética Inversa/métodos , Rotavirus/crecimiento & desarrollo , Rotavirus/genética , Animales , Proteínas de la Cápside/genética , Línea Celular , Pollos , Haplorrinos , Recombinación Genética , Rotavirus/aislamiento & purificación , Cultivo de Virus
8.
J Virol ; 90(17): 7647-56, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27279619

RESUMEN

UNLABELLED: We have previously shown that 11 patients became naturally coinfected with seasonal H1N1 (A/H1N1) and pandemic H1N1 (pdm/H1N1) during the Southern hemisphere winter of 2009 in New Zealand. Reassortment of influenza A viruses is readily observed during coinfection of host animals and in vitro; however, reports of reassortment occurring naturally in humans are rare. Using clinical specimen material, we show reassortment between the two coinfecting viruses occurred with high likelihood directly in one of the previously identified patients. Despite the lack of spread of these reassortants in the community, we did not find them to be attenuated in several model systems for viral replication and virus transmission: multistep growth curves in differentiated human bronchial epithelial cells revealed no growth deficiency in six recovered reassortants compared to A/H1N1 and pdm/H1N1 isolates. Two reassortant viruses were assessed in ferrets and showed transmission to aerosol contacts. This study demonstrates that influenza virus reassortants can arise in naturally coinfected patients. IMPORTANCE: Reassortment of influenza A viruses is an important driver of virus evolution, but little has been done to address humans as hosts for the generation of novel influenza viruses. We show here that multiple reassortant viruses were generated during natural coinfection of a patient with pandemic H1N1 (2009) and seasonal H1N1 influenza A viruses. Though apparently fit in model systems, these reassortants did not become established in the wider population, presumably due to herd immunity against their seasonal H1 antigen.


Asunto(s)
Coinfección/virología , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/genética , Animales , Modelos Animales de Enfermedad , Células Epiteliales/virología , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Nueva Zelanda , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Fenotipo , Virus Reordenados/aislamiento & purificación , Virulencia , Replicación Viral
9.
J Virol ; 90(1): 222-31, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26468540

RESUMEN

UNLABELLED: PB1-F2 protein, the 11th influenza A virus (IAV) protein, is considered to play an important role in primary influenza virus infection and postinfluenza secondary bacterial pneumonia in mice. The functional role of PB1-F2 has been reported to be a strain-specific and host-specific phenomenon. Its precise contribution to the pathogenicity and transmission of influenza virus in mammalian host, such as swine, and avian hosts, such as turkeys, remain largely unknown. In this study, we explored the role of PB1-F2 protein of triple-reassortant (TR) H3N2 swine influenza virus (SIV) in pigs and turkeys. Using the eight-plasmid reverse genetics system, we rescued wild-type SIV A/swine/Minnesota/1145/2007 (H3N2) (SIV 1145-WT), a PB1-F2 knockout mutant (SIV 1145-KO), and its N66S variant (SIV 1145-N66S). The ablation of PB1-F2 in SIV 1145 modulated early-stage apoptosis but did not affect the viral replication in swine alveolar macrophage cells. In pigs, PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology. On the other hand, in turkeys, SIV 1145-KO infected poults, and its in-contacts developed clinical signs earlier than SIV 1145-WT groups and also displayed more extensive histopathological changes in intestine. Further, turkeys infected with SIV 1145-N66S displayed poor infectivity and transmissibility. The more extensive histopathologic changes in intestine and relative transmission advantage observed in turkeys infected with SIV 1145-KO need to be further explored. Taken together, these results emphasize the host-specific roles of PB1-F2 in the pathogenicity and transmission of IAV. IMPORTANCE: Novel triple-reassortant H3N2 swine influenza virus emerged in 1998 and spread rapidly among the North American swine population. Subsequently, it showed an increased propensity to reassort, generating a range of reassortants. Unlike classical swine influenza virus, TR SIV produces a full-length PB1-F2 protein, which is considered an important virulence marker of IAV pathogenicity. Our study demonstrated that the expression of PB1-F2 does not impact the pathogenicity of TR H3N2 SIV in pigs. On the other hand, deletion of PB1-F2 caused TR H3N2 SIV to induce clinical disease early and resulted in effective transmission among the turkey poults. Our study emphasizes the continuing need to better understand the virulence determinants for IAV in intermediate hosts, such as swine and turkeys, and highlights the host-specific role of PB1-F2 protein.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/fisiología , Virus Reordenados/fisiología , Proteínas Virales/metabolismo , Animales , Apoptosis , Especificidad del Huésped , Gripe Aviar/patología , Gripe Aviar/transmisión , Gripe Aviar/virología , Intestinos/patología , Pulmón/patología , Pulmón/virología , Macrófagos/fisiología , Macrófagos/virología , Ratones , América del Norte , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/patogenicidad , Genética Inversa/métodos , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología , Pavos , Carga Viral , Virulencia , Replicación Viral , Esparcimiento de Virus
10.
Antimicrob Agents Chemother ; 60(9): 5182-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27297486

RESUMEN

Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-ß-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/prevención & control , Quercetina/análogos & derivados , Virus Reordenados/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Ebolavirus/crecimiento & desarrollo , Femenino , Fiebre Hemorrágica Ebola/mortalidad , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Quercetina/farmacología , Virus Reordenados/crecimiento & desarrollo , Análisis de Supervivencia , Pruebas de Toxicidad Crónica , Resultado del Tratamiento , Células Vero
11.
Antimicrob Agents Chemother ; 60(11): 6679-6691, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27572398

RESUMEN

T-705 (favipiravir) is a new antiviral agent in advanced clinical development for influenza therapy. It is supposed to act as an alternative substrate for the viral polymerase, causing inhibition of viral RNA synthesis or virus mutagenesis. These mechanisms were also proposed for ribavirin, an established and broad antiviral drug that shares structural similarity with T-705. We here performed a comparative analysis of the effects of T-705 and ribavirin on influenza virus and host cell functions. Influenza virus-infected cell cultures were exposed to T-705 or ribavirin during single or serial virus passaging. The effects on viral RNA synthesis and infectious virus yield were determined and mutations appearing in the viral genome were detected by whole-genome virus sequencing. In addition, the cellular nucleotide pools as well as direct inhibition of the viral polymerase enzyme were quantified. We demonstrate that the anti-influenza virus effect of ribavirin is based on IMP dehydrogenase inhibition, which results in fast and profound GTP depletion and an imbalance in the nucleotide pools. In contrast, T-705 acts as a potent and GTP-competitive inhibitor of the viral polymerase. In infected cells, viral RNA synthesis is completely inhibited by T-705 or ribavirin at ≥50 µM, whereas exposure to lower drug concentrations induces formation of noninfectious particles and accumulation of random point mutations in the viral genome. This mutagenic effect is 2-fold higher for T-705 than for ribavirin. Hence, T-705 and ribavirin both act as purine pseudobases but profoundly differ with regard to the mechanism behind their antiviral and mutagenic effects on influenza virus.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Regulación Viral de la Expresión Génica , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Pirazinas/farmacología , Virus Reordenados/efectos de los fármacos , Ribavirina/farmacología , Células A549 , Amidas/química , Animales , Antivirales/química , Embrión de Pollo , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Perros , Humanos , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Células de Riñón Canino Madin Darby , Mutación/efectos de los fármacos , Pirazinas/química , ARN Viral/antagonistas & inhibidores , ARN Viral/biosíntesis , Virus Reordenados/genética , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/metabolismo , Ribavirina/química , Análisis de Secuencia de ARN , Relación Estructura-Actividad , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
12.
J Gen Virol ; 97(4): 901-911, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26795299

RESUMEN

The 5' untranslated region (5'UTR) of foot-and-mouth disease virus (FMDV) contains an internal ribosome entry site (IRES) that facilitates translation initiation of the viral ORF in a 5' (m7GpppN) cap-independent manner. IRES elements are responsible for the virulence phenotypes of several enteroviruses. Here, we constructed a chimeric virus in which the IRES of FMDV was completely replaced with that of bovine rhinitis B virus (BRBV) in an infectious clone of serotype O FMDV. The resulting IRES-replaced virus, FMDV(BRBV), replicated as efficiently as WT FMDV in hamster-derived BHK-21 cells, but was restricted for growth in porcine-derived IBRS-2, PK-15 and SK-6 cells, which are susceptible to WT FMDV. To identify the genetic determinants of FMDV underlying this altered cell tropism, a series of IRES-chimeric viruses were constructed in which each domain of the FMDV IRES was replaced with its counterpart from the BRBV IRES. The replication kinetics of these chimeric viruses in different cell lines revealed that the growth restriction phenotype in porcine-derived cells was produced after the replacement of domain 3 or 4 in the FMDV IRES. Furthermore, the change in FMDV cell tropism due to IRES replacement in porcine-derived cells was mainly attributed to a decline in cell-specific IRES translation initiation efficiency. These findings demonstrate that IRES domains 3 and 4 of FMDV are novel cell-specific cis-elements for viral replication in vitro and suggest that IRES-mediated translation determines the species specificity of FMDV infection in vivo.


Asunto(s)
Virus de la Fiebre Aftosa/genética , Regulación Viral de la Expresión Génica , Herpesvirus Bovino 1/genética , Sitios Internos de Entrada al Ribosoma , Virus Reordenados/genética , Tropismo Viral , Animales , Secuencia de Bases , Línea Celular , Quimera/genética , Cricetulus , Células Epiteliales/patología , Células Epiteliales/virología , Virus de la Fiebre Aftosa/crecimiento & desarrollo , Especificidad del Huésped , Riñón/patología , Riñón/virología , Datos de Secuencia Molecular , Iniciación de la Cadena Peptídica Traduccional , ARN Viral/genética , ARN Viral/metabolismo , Virus Reordenados/crecimiento & desarrollo , Replicón , Ribosomas , Porcinos , Replicación Viral
13.
J Med Virol ; 88(11): 1914-21, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27101353

RESUMEN

Usage of influenza vaccine is the best choice measure for preventing and conclusion of influenza virus infection. Although it has been used of chicken embryo to produce influenza vaccine, following with WHO recommended vaccine strain, there were uncontrollable factors and its deficiencies, specially, during an influenza pandemic in the world. The Vero cells are used for vaccine production of a few strains including influenza virus, because of its homology with human, recommended by WHO. However, as known most of the influenza viruses strains could not culture by Vero cells. It was used two high-yield influenza viruses adapted in Vero cells as donor viruses, such as A/Yunnan/1/2005Va (H3N2) and B/Yunnan/2/2005Va (B), to construct high-yield wild influenza virus in Vero cells under antibody selection pressure. After reassortment and passages, it obtained the new Vaccine strains with A/Tianjin/15/2009Va (H1N1), A/Fujian/196/2009Va (H3N2) and B/Chongqing/1384/2010Va (B), which was not only completely keeping their original antigenic (HA and NA), but also grown well in Vero cells with high-yield. All results of gene analysis and HA, HI shown that this reassortment method could be used to find new direction to product the influenza vaccine. J. Med. Virol. 88:1914-1921, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Virus Reordenados/genética , Animales , Antígenos Virales/aislamiento & purificación , Pollos , Chlorocebus aethiops , Cobayas , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/inmunología , Células Vero
14.
J Gen Virol ; 96(10): 2982-2993, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26251306

RESUMEN

To gain insight into the evolution of influenza A viruses (IAVs) during infection of vaccinated pigs, we experimentally infected a 3-week-old naive pig with a triple-reassortant H1N1 IAV and placed the seeder pig in direct contact with a group of age-matched vaccinated pigs (n = 10). We indexed the genetic diversity and evolution of the virus at an intra-host level by deep sequencing the entire genome directly from nasal swabs collected at two separate samplings during infection. We obtained 13 IAV metagenomes from 13 samples, which included the virus inoculum and two samples from each of the six pigs that tested positive for IAV during the study. The infection produced a population of heterogeneous alleles (sequence variants) that was dynamic over time. Overall, 794 polymorphisms were identified amongst all samples, which yielded 327 alleles, 214 of which were unique sequences. A total of 43 distinct haemagglutinin proteins were translated, two of which were observed in multiple pigs, whereas the neuraminidase (NA) was conserved and only one dominant NA was found throughout the study. The genetic diversity of IAVs changed dynamically within and between pigs. However, most of the substitutions observed in the internal gene segments were synonymous. Our results demonstrated remarkable IAV diversity, and the complex, rapid and dynamic evolution of IAV during infection of vaccinated pigs that can only be appreciated with repeated sampling of individual animals and deep sequence analysis.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Alelos , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Metagenoma , Datos de Secuencia Molecular , Mucosa Nasal/inmunología , Mucosa Nasal/virología , Infecciones por Orthomyxoviridae/inmunología , ARN Viral/genética , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/inmunología , Virus Reordenados/aislamiento & purificación , Análisis de Secuencia de ADN , Porcinos , Proteínas Virales/genética
15.
J Gen Virol ; 96(Pt 6): 1287-1296, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25626678

RESUMEN

We previously reported that betanodavirus reassortant strains [redspotted grouper nervous necrosis virus/striped jack nervous necrosis virus (SJNNV)] isolated from Senegalese sole (Solea senegalensis) exhibited a modified SJNNV capsid amino acid sequence, with changes at aa 247 and 270. In the current study, we investigated the possible role of both residues as putative virulence determinants. Three recombinant viruses harbouring site-specific mutations in the capsid protein sequence, rSs160.03247 (S247A), rSs160.03270 (S270N) and rSs160.03247+270 (S247A/S270N), were generated using a reverse genetics system. These recombinant viruses were studied in cell culture and in vivo in the natural fish host. The three mutant viruses were shown to be infectious and able to replicate in E-11 cells, reaching final titres similar to the WT virus, although with a somewhat slower kinetics of replication. When the effect of the amino acid substitutions on virus pathogenicity was evaluated in Senegalese sole, typical clinical signs of betanodavirus infection were observed in all groups. However, fish mortality induced by all three mutant viruses was clearly affected. Roughly 40 % of the fish survived in these three groups in contrast with the WT virus which killed 100 % of the fish. These data demonstrated that aa 247 and 270 play a major role in betanodavirus virulence although when both mutated aa 247 and 270 are present, corresponding recombinant virus was not further attenuated.


Asunto(s)
Proteínas de la Cápside/metabolismo , Enfermedades de los Peces/patología , Enfermedades de los Peces/virología , Nodaviridae/fisiología , Infecciones por Virus ARN/veterinaria , Virus Reordenados/fisiología , Factores de Virulencia/metabolismo , Sustitución de Aminoácidos , Animales , Proteínas de la Cápside/genética , Línea Celular , Peces Planos/virología , Mutación Missense , Nodaviridae/genética , Nodaviridae/crecimiento & desarrollo , Nodaviridae/patogenicidad , Mutación Puntual , Infecciones por Virus ARN/patología , Infecciones por Virus ARN/virología , Virus Reordenados/genética , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/patogenicidad , Genética Inversa , Análisis de Supervivencia , Carga Viral , Virulencia , Factores de Virulencia/genética , Replicación Viral
16.
J Virol ; 87(6): 3277-83, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23302886

RESUMEN

Although the ferret model has been extensively used to study pathogenesis and transmission of influenza viruses, little has been done to determine whether ferrets are a good surrogate animal model to study influenza virus reassortment. It has been previously shown that the pandemic 2009 H1N1 (H1N1pdm) virus was able to transmit efficiently in ferrets. In coinfection studies with either seasonal H1N1 or H3N2 strains (H1N1s or H3N2s, respectively), the H1N1pdm virus was able to outcompete these strains and become the dominant transmissible virus. However, lack of reassortment could have been the result of differences in the cell or tissue tropism of these viruses in the ferret. To address this issue, we performed coinfection studies with recombinant influenza viruses carrying the surface genes of a seasonal H3N2 strain in the background of an H1N1pdm strain and vice versa. After serial passages in ferrets, a dominant H1N2 virus population was obtained with a constellation of gene segments, most of which, except for the neuraminidase (NA) and PB1 segments, were from the H1N1pdm strain. Our studies suggest that ferrets recapitulate influenza virus reassortment events. The H1N2 virus generated through this process resembles similar viruses that are emerging in nature, particularly in pigs.


Asunto(s)
Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/aislamiento & purificación , Animales , Modelos Animales de Enfermedad , Hurones , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/genética , Virus Reordenados/genética , Virus Reordenados/crecimiento & desarrollo , Pase Seriado
17.
J Virol ; 87(10): 5577-85, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23468502

RESUMEN

The yields of egg-grown influenza vaccines are maximized by the production of a seed strain using a reassortment of the seasonal influenza virus isolate with a highly egg-adapted strain. The seed virus is selected based on high yields of viral hemagglutinin (HA) and expression of the surface antigens from the seasonal isolate. The remaining proteins are usually derived from the high-growth parent. However, a retrospective analysis of vaccine seeds revealed that the seasonal PB1 gene was selected in more than 50% of reassortment events. Using the model seasonal H3N2 virus A/Udorn/307/72 (Udorn) virus and the high-growth A/Puerto Rico/8/34 (PR8) virus, we assessed the influence of the source of the PB1 gene on virus growth and vaccine yield. Classical reassortment of these two strains led to the selection of viruses that predominantly had the Udorn PB1 gene. The presence of Udorn PB1 in the seed virus, however, did not result in higher yields of virus or HA compared to the yields in the corresponding seed virus with PR8 PB1. The 8-fold-fewer virions produced with the seed virus containing the Udorn PB1 were somewhat compensated for by a 4-fold increase in HA per virion. A higher HA/nucleoprotein (NP) ratio was found in past vaccine preparations when the seasonal PB1 was present, also indicative of a higher HA density in these vaccine viruses. As the HA viral RNA (vRNA) and mRNA levels in infected cells were similar, we propose that PB1 selectively alters the translation of viral mRNA. This study helps to explain the variability of vaccine seeds with respect to HA yield.


Asunto(s)
Hemaglutininas/análisis , Vacunas contra la Influenza/química , Orthomyxoviridae/química , Virus Reordenados/química , Proteínas Virales/metabolismo , Animales , Hemaglutininas/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Orthomyxoviridae/crecimiento & desarrollo , Orthomyxoviridae/inmunología , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/inmunología , Tecnología Farmacéutica/métodos
18.
Arch Virol ; 159(11): 2957-67, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24957653

RESUMEN

Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/inmunología , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Antivirales/inmunología , Femenino , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Virus Reordenados/crecimiento & desarrollo , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/genética , Vacunas de Productos Inactivados/inmunología , Proteínas Virales/administración & dosificación , Proteínas Virales/genética , Proteínas Virales/inmunología
19.
Biochem Biophys Res Commun ; 421(4): 850-4, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22554519

RESUMEN

Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/crecimiento & desarrollo , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Virus Reordenados/crecimiento & desarrollo , Cultivo de Virus/métodos , Animales , Embrión de Pollo , Chlorocebus aethiops , Femenino , Humanos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C , Virus Reordenados/inmunología , Virus Reordenados/patogenicidad , Vacunas Atenuadas/inmunología , Células Vero
20.
J Virol ; 85(10): 5048-60, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21367894

RESUMEN

Four rotavirus SA11 temperature-sensitive (ts) mutants and seven rotavirus RRV ts mutants, isolated at the National Institutes of Health (NIH) and not genetically characterized, were assigned to reassortment groups by pairwise crosses with the SA11 mutant group prototypes isolated and characterized at Baylor College of Medicine (BCM). Among the NIH mutants, three of the RRV mutants and all four SA11 mutants contained mutations in single reassortment groups, and four RRV mutants contained mutations in multiple groups. One NIH mutant [RRVtsK(2)] identified the previously undefined 11th reassortment group (K) expected for rotavirus. Three NIH single mutant RRV viruses, RRVtsD(7), RRVtsJ(5), and RRVtsK(2), were in reassortment groups not previously mapped to genome segments. These mutants were mapped using classical genetic methods, including backcrosses to demonstrate reversion or suppression in reassortants with incongruent genotype and temperature phenotype. Once located to specific genome segments by genetic means, the mutations responsible for the ts phenotype were identified by sequencing. The reassortment group K mutant RRVtsK(2) maps to genome segment 9 and has a Thr280Ileu mutation in the capsid surface glycoprotein VP7. The group D mutant RRVtsD(7) maps to segment 5 and has a Leu140Val mutation in the nonstructural interferon (IFN) antagonist protein NSP1. The group J mutant RRVtsJ(5) maps to segment 11 and has an Ala182Gly mutation affecting only the NSP5 open reading frame. Rotavirus ts mutation groups are now mapped to 9 of the 11 rotavirus genome segments. Possible segment locations of the two remaining unmapped ts mutant groups are discussed.


Asunto(s)
Genoma Viral , Mutación , ARN Viral/genética , Rotavirus/crecimiento & desarrollo , Rotavirus/genética , Replicación Viral/efectos de la radiación , Mapeo Cromosómico , Datos de Secuencia Molecular , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/crecimiento & desarrollo , Rotavirus/clasificación , Análisis de Secuencia de ADN , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA