Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 872
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Neurosci ; 42: 169-186, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857477

RESUMEN

Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world.


Asunto(s)
Primates/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Visión Ocular/fisiología , Animales , Visión de Colores/fisiología , Percepción de Forma/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa , Células Ganglionares de la Retina/fisiología , Análisis de la Célula Individual , Percepción Visual/fisiología
2.
Physiol Rev ; 99(3): 1527-1573, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31140374

RESUMEN

Synaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum. We review studies concerning the circuit mechanisms mediating opponent interactions in a range of species, from tetrachromatic fish with diverse color opponent cell types to common dichromatic mammals where cone opponency is restricted to a subset of specialized circuits. Distinct among mammals, primates have reinvented trichromatic color vision using novel strategies to incorporate evolution of an additional photopigment gene into the foveal structure and circuitry that supports high-resolution vision. Color vision is absent at scotopic light levels when only rods are active, but rods interact with cone signals to influence color perception at mesopic light levels. Recent evidence suggests melanopsin-mediated signals, which have been identified as a substrate for setting circadian rhythms, may also influence color perception. We consider circuits that may mediate these interactions. While cone opponency is a relatively simple neural computation, it has been implemented in vertebrates by diverse neural mechanisms that are not yet fully understood.


Asunto(s)
Visión de Colores/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Retina/fisiología , Vertebrados/fisiología , Animales , Humanos , Red Nerviosa/fisiología , Retina/citología
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33547236

RESUMEN

Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.


Asunto(s)
Mariposas Diurnas/fisiología , Visión de Colores/fisiología , Evolución Molecular , Rodopsina/genética , Animales , Duplicación de Gen , Células HEK293 , Humanos , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentación/fisiología , Carácter Cuantitativo Heredable , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rodopsina/metabolismo , Opsinas de Bastones/genética , Alas de Animales/fisiología
4.
Int Ophthalmol ; 44(1): 276, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916772

RESUMEN

PURPOSE: To evaluate mesopic and photopic contrast sensitivity in patients with congenital red-green color vision deficiency regarding with and without glare conditions and to compare these findings with age- and gender-matched healthy controls with normal color vision. METHODS: Patients with congenital red-green color vision deficiency and age- and gender-matched healthy controls were included in this cross-sectional comparative study. Contrast sensitivity measurements were taken from all subjects in 4 different conditions; binocular mesopic-without glare, mesopic-with glare, photopic-without glare, photopic-with glare, and the results were compared. RESULTS: Twenty one patients with color vision deficiency (13 deuteranopic, 8 protanopic) and 22 age- and gender-matched healthy controls were included in the study. The mean age was 35.2 ± 13.5 years in the protan group, 30.6 ± 7.7 years in the deutan group, 32.0 ± 8.8 years in the control group, and there was no significant difference in age between the groups (P > 0.05). The mean mesopic and photopic contrast sensitivity values of the groups at all spatial frequencies (1.5, 3, 6, 12, 18 cpd) were not statistically significant when evaluated by the multifactor repeated measures test of ANOVA to evaluate the effect of light conditions (with and without glare) (P > .05). CONCLUSION: Mesopic and photopic contrast sensitivity values of patients with congenital red-green color vision deficiency were similar to healthy controls regarding with and without glare conditions.


Asunto(s)
Defectos de la Visión Cromática , Visión de Colores , Sensibilidad de Contraste , Humanos , Sensibilidad de Contraste/fisiología , Defectos de la Visión Cromática/fisiopatología , Defectos de la Visión Cromática/diagnóstico , Femenino , Masculino , Estudios Transversales , Adulto , Visión de Colores/fisiología , Adulto Joven , Persona de Mediana Edad , Visión Mesópica/fisiología , Deslumbramiento , Agudeza Visual , Adolescente
5.
Proc Natl Acad Sci U S A ; 117(26): 15112-15122, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541035

RESUMEN

Many animals have the potential to discriminate nonspectral colors. For humans, purple is the clearest example of a nonspectral color. It is perceived when two color cone types in the retina (blue and red) with nonadjacent spectral sensitivity curves are predominantly stimulated. Purple is considered nonspectral because no monochromatic light (such as from a rainbow) can evoke this simultaneous stimulation. Except in primates and bees, few behavioral experiments have directly examined nonspectral color discrimination, and little is known about nonspectral color perception in animals with more than three types of color photoreceptors. Birds have four color cone types (compared to three in humans) and might perceive additional nonspectral colors such as UV+red and UV+green. Can birds discriminate nonspectral colors, and are these colors behaviorally and ecologically relevant? Here, using comprehensive behavioral experiments, we show that wild hummingbirds can discriminate a variety of nonspectral colors. We also show that hummingbirds, relative to humans, likely perceive a greater proportion of natural colors as nonspectral. Our analysis of plumage and plant spectra reveals many colors that would be perceived as nonspectral by birds but not by humans: Birds' extra cone type allows them not just to see UV light but also to discriminate additional nonspectral colors. Our results support the idea that birds can distinguish colors throughout tetrachromatic color space and indicate that nonspectral color perception is vital for signaling and foraging. Since tetrachromacy appears to have evolved early in vertebrates, this capacity for rich nonspectral color perception is likely widespread.


Asunto(s)
Aves/fisiología , Percepción de Color/fisiología , Visión de Colores/fisiología , Animales , Estimulación Luminosa , Retina
6.
Proc Natl Acad Sci U S A ; 117(14): 8196-8202, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32193344

RESUMEN

Our ability to recognize objects in peripheral vision is fundamentally limited by crowding, the deleterious effect of clutter that disrupts the recognition of features ranging from orientation and color to motion and depth. Previous research is equivocal on whether this reflects a singular process that disrupts all features simultaneously or multiple processes that affect each independently. We examined crowding for motion and color, two features that allow a strong test of feature independence. "Cowhide" stimuli were presented 15° in peripheral vision, either in isolation or surrounded by flankers to give crowding. Observers reported either the target direction (clockwise/counterclockwise from upward) or its hue (blue/purple). We first established that both features show systematic crowded errors (biased predominantly toward the flanker identities) and selectivity for target-flanker similarity (with reduced crowding for dissimilar target/flanker elements). The multiplicity of crowding was then tested with observers identifying both features. Here, a singular object-selective mechanism predicts that when crowding is weak for one feature and strong for the other that crowding should be all-or-none for both. In contrast, when crowding was weak for color and strong for motion, errors were reduced for color but remained for motion, and vice versa with weak motion and strong color crowding. This double dissociation reveals that crowding disrupts certain combinations of visual features in a feature-specific manner, ruling out a singular object-selective mechanism. Thus, the ability to recognize one aspect of a cluttered scene, like color, offers no guarantees for the correct recognition of other aspects, like motion.


Asunto(s)
Visión de Colores/fisiología , Aglomeración , Modelos Neurológicos , Movimiento (Física) , Percepción Visual/fisiología , Atención/fisiología , Color , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos
7.
Proc Natl Acad Sci U S A ; 117(26): 15262-15269, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541022

RESUMEN

Thyroid hormone (TH) signaling plays an important role in the regulation of long-wavelength vision in vertebrates. In the retina, thyroid hormone receptor ß (thrb) is required for expression of long-wavelength-sensitive opsin (lws) in red cone photoreceptors, while in retinal pigment epithelium (RPE), TH regulates expression of a cytochrome P450 enzyme, cyp27c1, that converts vitamin A1 into vitamin A2 to produce a red-shifted chromophore. To better understand how TH controls these processes, we analyzed the phenotype of zebrafish with mutations in the three known TH nuclear receptor transcription factors (thraa, thrab, and thrb). We found that no single TH nuclear receptor is required for TH-mediated induction of cyp27c1 but that deletion of all three (thraa-/-;thrab-/-;thrb-/- ) completely abrogates its induction and the resulting conversion of A1- to A2-based retinoids. In the retina, loss of thrb resulted in an absence of red cones at both larval and adult stages without disruption of the underlying cone mosaic. RNA-sequencing analysis revealed significant down-regulation of only five genes in adult thrb-/- retina, of which three (lws1, lws2, and miR-726) occur in a single syntenic cluster. In the thrb-/- retina, retinal progenitors destined to become red cones were transfated into ultraviolet (UV) cones and horizontal cells. Taken together, our findings demonstrate cooperative regulation of cyp27c1 by TH receptors and a requirement for thrb in red cone fate determination. Thus, TH signaling coordinately regulates both spectral sensitivity and sensory plasticity.


Asunto(s)
Visión de Colores/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Opsinas/metabolismo , Receptores de Hormona Tiroidea/fisiología , Percepción Visual/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Visión de Colores/genética , Sistema Enzimático del Citocromo P-450/genética , Eliminación de Gen , Regulación de la Expresión Génica , Opsinas/genética , Células Fotorreceptoras Retinianas Conos , Rayos Ultravioleta , Pez Cebra , Proteínas de Pez Cebra/genética
8.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445836

RESUMEN

Interphotoreceptor retinoid-binding protein (IRBP) is an abundant glycoprotein in the subretinal space bound by the photoreceptor (PR) outer segments and the processes of the retinal pigmented epithelium (RPE). IRBP binds retinoids, including 11-cis-retinal and all-trans-retinol. In this study, visual function for demanding visual tasks was assessed in IRBP knock-out (KO) mice. Surprisingly, IRBP KO mice showed no differences in scotopic critical flicker frequency (CFF) compared to wildtype (WT). However, they did have lower photopic CFF than WT. IRBP KO mice had reduced scotopic and photopic acuity and contrast sensitivity compared to WT. IRBP KO mice had a significant reduction in outer nuclear layer (ONL) thickness, PR outer and inner segment, and full retinal thickness (FRT) compared to WT. There were fewer cones in IRBP KO mice. Overall, these results confirm substantial loss of rods and significant loss of cones within 30 days. Absence of IRBP resulted in cone circuit damage, reducing photopic flicker, contrast sensitivity, and spatial frequency sensitivity. The c-wave was reduced and accelerated in response to bright steps of light. This result also suggests altered retinal pigment epithelium activity. There appears to be a compensatory mechanism such as higher synaptic gain between PRs and bipolar cells since the loss of the b-wave did not linearly follow the loss of rods, or the a-wave. Scotopic CFF is normal despite thinning of ONL and reduced scotopic electroretinogram (ERG) in IRBP KO mice, suggesting either a redundancy or plasticity in circuits detecting (encoding) scotopic flicker at threshold even with substantial rod loss.


Asunto(s)
Proteínas del Ojo , Visión Nocturna , Retina , Proteínas de Unión al Retinol , Retina/fisiología , Retina/ultraestructura , Estimulación Luminosa , Proteínas del Ojo/genética , Proteínas del Ojo/fisiología , Proteínas de Unión al Retinol/genética , Proteínas de Unión al Retinol/fisiología , Ratones Noqueados , Animales , Ratones , Fusión de Flicker/genética , Fusión de Flicker/fisiología , Visión de Colores/genética , Visión de Colores/fisiología , Agudeza Visual/genética , Agudeza Visual/fisiología , Visión Nocturna/genética , Visión Nocturna/fisiología , Tomografía de Coherencia Óptica , Masculino , Femenino
9.
Semin Cell Dev Biol ; 106: 12-19, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32331993

RESUMEN

The visual sense of elasmobranch fishes is poorly studied compared to their bony cousins, the teleosts. Nevertheless, the elasmobranch eye features numerous specialisations that have no doubt facilitated the diversification and evolutionary success of this fascinating taxon. In this review, I highlight recent discoveries on the nature and phylogenetic distribution of visual pigments in sharks and rays. Whereas most rays appear to be cone dichromats, all sharks studied to date are cone monochromats and, as a group, have likely abandoned colour vision on multiple occasions. This situation in sharks mirrors that seen in other large marine predators, the pinnipeds and cetaceans, which leads us to reassess the costs and benefits of multiple cone pigments and wavelength discrimination in the marine environment.


Asunto(s)
Visión de Colores/fisiología , Opsinas/fisiología , Animales , Peces , Tiburones , Rajidae
10.
Exp Eye Res ; 214: 108894, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906600

RESUMEN

Elevated levels of the excitatory amino acid homocysteine (Hcy) have been implicated in retinal diseases in humans including glaucoma and macular degeneration. It is not clear whether elevated Hcy levels are pathogenic. Models of hyperhomocysteinemia (Hhcy) have proven useful in addressing this including mice with deficiency in the enzyme cystathionine ß-synthase (CBS). Cbs+/- mice have a ∼two-fold increase in plasma and retinal Hcy levels. Previous studies of visual function and structure in Cbs+/- mice during the first 10 months of life revealed mild ganglion cell loss, but minimal electrophysiological alterations. It is not clear whether extended, chronic exposure to moderate Hhcy elevation will lead to visual function loss and retinal pathology. The present study addressed this by performing comprehensive analyses of retinal function/structure in 20 month Cbs+/- and Cbs+/+ (WT) mice including IOP, SD-OCT, scotopic and photopic ERG, pattern ERG (pERG), and visual acuity. Eyes were harvested for histology and immunohistochemical analysis of Brn3a (ganglion cells), dihydroethidium (oxidative stress) and GFAP (gliosis). The analyses revealed no difference in IOP between groups for age/strain. Visual acuity measured ∼0.36c/d for mice at 20 months in Cbs+/- and WT mice; contrast sensitivity did not differ between groups at either age. Similarly SD-OCT, scotopic/photopic ERG and pERG revealed no differences between 20 month Cbs+/- and WT mice. There was minimal disruption in retinal structure when eyes were examined histologically. Morphometric analysis revealed no significant differences in retinal layers. Immunohistochemistry revealed ∼5 RGCs/100 µm retinal length in both Cbs+/- and WT mice at 20 months. While there was greater oxidative stress and gliosis in older (20 month) mice versus young (4 month) mice, there was no difference in these parameters between the 20 month Cbs+/- and WT mice. We conclude that chronic, moderate Hhcy (at least due to deficiency of Cbs) is not accompanied by retinal structural/functional changes that differ significantly from age-matched WT littermates. Despite considerable evidence that severe Hhcy is toxic to retina, moderate Hhcy appears tolerated by retina suggesting compensatory cellular survival mechanisms.


Asunto(s)
Cistationina betasintasa/genética , Hiperhomocisteinemia/fisiopatología , Mutación , Retina/fisiopatología , Animales , Enfermedad Crónica , Visión de Colores/fisiología , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Homocisteína/metabolismo , Hiperhomocisteinemia/genética , Presión Intraocular/fisiología , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos C57BL , Visión Nocturna/fisiología , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología
11.
Nature ; 535(7611): 280-4, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27383790

RESUMEN

Butterflies rely extensively on colour vision to adapt to the natural world. Most species express a broad range of colour-sensitive Rhodopsin proteins in three types of ommatidia (unit eyes), which are distributed stochastically across the retina. The retinas of Drosophila melanogaster use just two main types, in which fate is controlled by the binary stochastic decision to express the transcription factor Spineless in R7 photoreceptors. We investigated how butterflies instead generate three stochastically distributed ommatidial types, resulting in a more diverse retinal mosaic that provides the basis for additional colour comparisons and an expanded range of colour vision. We show that the Japanese yellow swallowtail (Papilio xuthus, Papilionidae) and the painted lady (Vanessa cardui, Nymphalidae) butterflies have a second R7-like photoreceptor in each ommatidium. Independent stochastic expression of Spineless in each R7-like cell results in expression of a blue-sensitive (Spineless(ON)) or an ultraviolet (UV)-sensitive (Spineless(OFF)) Rhodopsin. In P. xuthus these choices of blue/blue, blue/UV or UV/UV sensitivity in the two R7 cells are coordinated with expression of additional Rhodopsin proteins in the remaining photoreceptors, and together define the three types of ommatidia. Knocking out spineless using CRISPR/Cas9 (refs 5, 6) leads to the loss of the blue-sensitive fate in R7-like cells and transforms retinas into homogeneous fields of UV/UV-type ommatidia, with corresponding changes in other coordinated features of ommatidial type. Hence, the three possible outcomes of Spineless expression define the three ommatidial types in butterflies. This developmental strategy allowed the deployment of an additional red-sensitive Rhodopsin in P. xuthus, allowing for the evolution of expanded colour vision with a greater variety of receptors. This surprisingly simple mechanism that makes use of two binary stochastic decisions coupled with local coordination may prove to be a general means of generating an increased diversity of developmental outcomes.


Asunto(s)
Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/fisiología , Visión de Colores/fisiología , Retina/citología , Retina/fisiología , Animales , Mariposas Diurnas/citología , Color , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Evolución Molecular , Femenino , Lógica , Células Fotorreceptoras de Invertebrados/metabolismo , Retina/anatomía & histología , Rodopsina/metabolismo , Procesos Estocásticos , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Nature ; 532(7598): 236-9, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27049951

RESUMEN

In bright light, cone-photoreceptors are active and colour vision derives from a comparison of signals in cones with different visual pigments. This comparison begins in the retina, where certain retinal ganglion cells have 'colour-opponent' visual responses-excited by light of one colour and suppressed by another colour. In dim light, rod-photoreceptors are active, but colour vision is impossible because they all use the same visual pigment. Instead, the rod signals are thought to splice into retinal circuits at various points, in synergy with the cone signals. Here we report a new circuit for colour vision that challenges these expectations. A genetically identified type of mouse retinal ganglion cell called JAMB (J-RGC), was found to have colour-opponent responses, OFF to ultraviolet (UV) light and ON to green light. Although the mouse retina contains a green-sensitive cone, the ON response instead originates in rods. Rods and cones both contribute to the response over several decades of light intensity. Remarkably, the rod signal in this circuit is antagonistic to that from cones. For rodents, this UV-green channel may play a role in social communication, as suggested by spectral measurements from the environment. In the human retina, all of the components for this circuit exist as well, and its function can explain certain experiences of colour in dim lights, such as a 'blue shift' in twilight. The discovery of this genetically defined pathway will enable new targeted studies of colour processing in the brain.


Asunto(s)
Percepción de Color/fisiología , Visión de Colores/fisiología , Vías Nerviosas/fisiología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Color , Percepción de Color/efectos de la radiación , Visión de Colores/efectos de la radiación , Oscuridad , Femenino , Humanos , Masculino , Ratones , Modelos Neurológicos , Vías Nerviosas/efectos de la radiación , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Sinapsis/metabolismo , Sinapsis/efectos de la radiación , Territorialidad , Rayos Ultravioleta
13.
Cereb Cortex ; 31(2): 1163-1181, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33073288

RESUMEN

In humans, visual stimuli can be perceived across an enormous range of light levels. Evidence suggests that different neural mechanisms process different subdivisions of this range. For instance, in the retina, stimuli presented at very low (scotopic) light levels activate rod photoreceptors, whereas cone photoreceptors are activated relatively more at higher (photopic) light levels. Similarly, different retinal ganglion cells are activated by scotopic versus photopic stimuli. However, in the brain, it remains unknown whether scotopic versus photopic information is: 1) processed in distinct channels, or 2) neurally merged. Using high-resolution functional magnetic resonance imaging at 7 T, we confirmed the first hypothesis. We first localized thick versus thin-type columns within areas V2, V3, and V4, based on photopic selectivity to motion versus color, respectively. Next, we found that scotopic stimuli selectively activated thick- (compared to thin-) type columns in V2 and V3 (in measurements of both overlap and amplitude) and V4 (based on overlap). Finally, we found stronger resting-state functional connections between scotopically dominated area MT with thick- (compared to thin-) type columns in areas V2, V3, and V4. We conclude that scotopic stimuli are processed in partially segregated parallel streams, emphasizing magnocellular influence, from retina through middle stages of visual cortex.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Visión Nocturna/fisiología , Estimulación Luminosa/métodos , Corteza Visual/fisiología , Vías Visuales/fisiología , Adulto , Visión de Colores/fisiología , Femenino , Humanos , Masculino , Células Fotorreceptoras Retinianas Bastones/fisiología , Corteza Visual/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen , Adulto Joven
14.
Proc Natl Acad Sci U S A ; 116(16): 7951-7956, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30944223

RESUMEN

Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function.


Asunto(s)
Visión de Colores/fisiología , Estimulación Luminosa/métodos , Células Fotorreceptoras Retinianas Conos/clasificación , Células Fotorreceptoras Retinianas Conos/fisiología , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Retina/diagnóstico por imagen , Retina/fisiología , Tomografía de Coherencia Óptica , Adulto Joven
15.
Ophthalmology ; 128(3): 453-462, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32858064

RESUMEN

PURPOSE: Bioelectronic retinal prostheses that stimulate the remaining inner retinal neurons, bypassing degenerated photoreceptors, have been demonstrated to restore some vision in patients blinded by retinitis pigmentosa (RP). These implants encode luminance of the visual scene into electrical stimulation, however, leaving out chromatic information. Yet color plays an important role in visual processing when it comes to recognizing objects and orienting to the environment, especially at low spatial resolution as generated by current retinal prostheses. In this study, we tested the feasibility of partially restoring color perception in blind RP patients, with the aim to provide chromatic information as an extra visual cue. DESIGN: Case series. PARTICIPANTS: Seven subjects blinded by advanced RP and monocularly fitted with an epiretinal prosthesis. METHODS: Frequency-modulated electrical stimulation of retina was tested. Phosphene brightness was controlled by amplitude tuning, and color perception was acquired using the Red, Yellow, Green, and Blue (RYGB) hue and saturation scaling model. MAIN OUTCOME MEASURES: Brightness and color of the electrically elicited visual perception reported by the subjects. RESULTS: Within the tested parameter space, 5 of 7 subjects perceived chromatic colors along or nearby the blue-yellow axis in color space. Aggregate data obtained from 20 electrodes of the 5 subjects show that an increase of the stimulation frequency from 6 to 120 Hz shifted color perception toward blue/purple despite a significant inter-subject variation in the transition frequency. The correlation between frequency and blue-yellow perception exhibited a good level of consistency over time and spatially matched multi-color perception was possible with simultaneous stimulation of paired electrodes. No obvious correlation was found between blue sensations and array placement or status of visual impairment. CONCLUSIONS: These findings present a strategy for the generation and control of color perception along the blue-yellow axis in blind patients with RP by electrically stimulating the retina. It could transform the current prosthetic vision landscape by leading in a new direction beyond the efforts to improve the visual acuity. This study also offers new insights into the response of our visual system to electrical stimuli in the photoreceptor-less retina that warrant further mechanistic investigation.


Asunto(s)
Ceguera/fisiopatología , Percepción de Color/fisiología , Terapia por Estimulación Eléctrica , Retina/fisiopatología , Retinitis Pigmentosa/terapia , Prótesis Visuales , Anciano , Visión de Colores/fisiología , Electrodos Implantados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosfenos , Células Fotorreceptoras de Vertebrados/fisiología , Retinitis Pigmentosa/fisiopatología , Umbral Sensorial/fisiología , Agudeza Visual
16.
Exp Eye Res ; 202: 108336, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33130032

RESUMEN

PURPOSE: Müller's muscle is a sympathetically innervated smooth muscle which serves as an accessory upper eyelid retractor. Its physiologic function and purpose have not yet been clearly defined. We hypothesize that sympathetic innervation to Müller's muscle serves to adjust the upper eyelid's position to variations in pupil size in response to changes in light intensity. METHODS: This is a single center cross-sectional study. Healthy volunteers were asked to fixate on a distant non-accommodative target, and a video scan of the anterior segment was performed for each subject's right eye using the Heidelberg Spectralis® optical coherence tomography scanner in infrared mode. The video was taken both in photopic and scotopic conditions, recording the resultant transition of the pupil and eyelids. The pupil diameter (PD), upper eyelid margin-to-reflex distance (MRD1), lower eyelid margin-to-reflex distance (MRD2), and vertical palpebral fissure height (PFH) were measured. RESULTS: Thirty-three healthy volunteers (19 women, 57.6%) with a median age of 40 years (range 30-58) were included. The mean PD under photopic conditions increased significantly under scotopic conditions, from 3483 ± 521 µm to 6135 ± 703 µm, respectively (P < 0.0001). An increase in MRD1 was observed following transition from light to dark, with a mean change of 348 ± 311 µm (P < 0.0001). There was no significant change in MRD2. CONCLUSIONS: Upper eyelid retraction occurs after transition from photopic to scotopic conditions. This movement suggests the existence of an "eyelid-light reflex" involving Müller's muscle that adjusts the position of the eyelids as the pupil dilates under scotopic conditions.


Asunto(s)
Párpados/fisiología , Músculo Liso/inervación , Sistema Nervioso Simpático/fisiología , Adulto , Visión de Colores/fisiología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Visión Nocturna/fisiología , Refracción Ocular/fisiología
17.
Doc Ophthalmol ; 142(2): 153-163, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32681419

RESUMEN

PURPOSE: To determine normative values, intra- and inter-session variability for a range of parameters derived from the photopic negative response (PhNR) using a handheld mini-Ganzfeld stimulator in healthy normal adults. METHODS: Light-adapted flash full-field electroretinograms (ERGs) were recorded from healthy individuals with no visual complaints, visual acuity equal to or better than 0.0 logMAR (20/20 Snellen), and negative family history for visual diseases. ERGs were recorded from both eyes using a DTL® type fiber electrode after dilation of the pupils with instillation of 1 drop of tropicamide eye drops (1%). The full-field PhNR stimulus conditions were produced by a LED-based ColorBurst™ (Diagnosys LLC, Lowell, MA, USA) handheld stimulator. Red flashes of 1, 5 and 7 cd.s/m2 on a blue background of 10 cd/m2 were presented. A-wave, b-wave and PhNR amplitude (determined by both baseline to trough-BT and peak to trough-PT) and peak times were analyzed. Normal limits were determined as 5% percentile for amplitudes and 95% percentile for latencies. Intra- and inter-session variability were assessed with Wilcoxon signed-rank test, intraclass correlation coefficient (ICC) and the coefficient of variability (COV). RESULTS: Normative limits for PhNR amplitude (µV) using 1, 5 and 7 cd.s./m2 stimuli were, respectively: 20.81; 18.06 and 19.60 for BT and 69.11; 77.98; 76.51 for PT. Peak times (ms) normative limits for 1, 5 and 7 cd.s/m2 intensities were, respectively, 65.98; 78.20 and 77.96. Overall, intra-session variability assessed by coefficients of variation ranged from 1.35 to 10.28%. Inter-session variability disclosed significant intraclass correlation values for all PhNR parameters only for 1 cd.s/m2 stimuli. CONCLUSIONS: The normative values provided by this study are clinically helpful in the diagnosis of inner retinal disorders, especially those affecting retinal ganglion cells such as glaucoma and other optic neuropathies. Further studies, including a larger sample with variable age range would extend the validity of the current results.


Asunto(s)
Visión de Colores/fisiología , Electrorretinografía/métodos , Retina/fisiología , Adolescente , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Microelectrodos , Persona de Mediana Edad , Variaciones Dependientes del Observador , Estimulación Luminosa , Valores de Referencia , Células Ganglionares de la Retina/fisiología , Adulto Joven
18.
Optom Vis Sci ; 98(3): 272-279, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771957

RESUMEN

PURPOSE: The purpose of this study was to examine the visual performance of center-distance MFCLs in nonpresbyopic adults under different illumination and contrast conditions compared with a single-vision contact lens (SVCL). METHODS: Twenty-five adult subjects were fit with three different lenses (CooperVision Biofinity D MFCL +2.50 add, Visioneering Technologies NaturalVue MFCL, CooperVision Biofinity sphere). Acuity and reading performance were evaluated. RESULTS: A statistically significant difference in high-contrast distance acuity was observed (Biofinity, -0.18 ± 0.06; Biofinity MFCL, -0.14 ± 0.08; NaturalVue MFCL, -0.15 ± 0.03; repeated-measures [RM] ANOVA, P = .02). Under mesopic, high-contrast conditions, MFCLs performed worse than SVCLs (Biofinity, -0.05 ± 0.091; Biofinity MFCL, +0.03 ± 0.09; NaturalVue MFCL, +0.05 ± 0.091; RM-ANOVA, P < .0001). Under low-contrast conditions, MFCLs performed one line worse in photopic lighting and two lines worse under mesopic conditions (RM-ANOVA, P < .0001). Glare reduced acuity by 0.5 logMAR for all lenses (RM-ANOVA, P < .001). A statistically significant difference in near acuity was observed (RM-ANOVA, P = .02), but all lenses achieved acuity better than -0.1 logMAR (Biofinity, -0.16 ± 0.06; Biofinity MFCL, -0.17 ± 0.04; NaturalVue MFCL, -0.13 ± 0.08). Reading performance in words per minute (wpm) was worse with MFCLs (Biofinity MFCL, 144 ± 22 wpm; NaturalVue MFCL, 150 ± 28 wpm) than with SVCLs (156 ± 23 wpm; RM-ANOVA, P = .02) regardless of letter size (RM-ANOVA, P = .13). No difference in acuity between the MFCLs was detected (RM-ANOVA: all, P > .05). CONCLUSIONS: Multifocal contact lenses perform similarly to SVCLs for high-contrast targets and display reduced low-contrast acuity and reading speed. Practitioners should recognize that high-contrast acuity alone does not describe MFCL visual performance.


Asunto(s)
Lentes de Contacto , Miopía/terapia , Agudeza Visual/fisiología , Adulto , Visión de Colores/fisiología , Sensibilidad de Contraste/fisiología , Estudios Cruzados , Femenino , Deslumbramiento , Humanos , Luz , Masculino , Miopía/fisiopatología , Ajuste de Prótesis , Refracción Ocular/fisiología , Método Simple Ciego , Adulto Joven
19.
Ophthalmic Physiol Opt ; 41(2): 447-456, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486810

RESUMEN

PURPOSE: To explore the differential effects of age and eccentricity on the perception of motion at photopic and mesopic light levels. METHODS: Thirty-six visually normal participants (18 younger; mean age 25 years, range: 20-31) and (18 older; mean age 70 years, range: 60-79) underwent two testing sessions, one at photopic and one at mesopic light levels. In each session, motion perception was tested binocularly at two eccentricities (centrally, and peripherally at 15° rightwards and 5° superior to the horizontal) for four motion tasks: minimum contrast of a drifting Gabor to identify motion direction (motion contrast); translational global motion coherence; biological motion embedded in noise and the minimum duration of a high-contrast Gabor to determine the direction of motion, using two Gabor sizes to measure spatial surround suppression of motion. RESULTS: There was a significant main effect of light condition (higher thresholds in mesopic) for motion contrast (p < 0.001), translational global motion (p = 0.001) and biological motion (p < 0.001); a significant main effect of age (higher thresholds in older adults) for motion contrast (p < 0.001) and biological motion (p = 0.04) and a significant main effect of eccentricity (higher thresholds peripherally) for motion contrast (p < 0.001) and biological motion (p < 0.001). Additionally, we found a significant three-way interaction between light levels, age and eccentricity for translational global motion (similar increase in mesopic thresholds centrally for both groups, but a much larger deterioration in older adult's peripheral mesopic thresholds, p = 0.02). Finally, we found a two-way interaction between light condition and eccentricity for translational global motion (higher values in central mesopic relative to peripheral photopic, p = 0.001) and for biological motion (higher values in peripheral mesopic relative to central photopic, p < 0.001). CONCLUSIONS: For the majority of tasks assessed, motion perception was reduced in mesopic relative to photopic conditions, to a similar extent in both age groups. However, because some older adults exhibited elevated thresholds even under photopic conditions, particularly in the periphery, the ability to detect mesopic moving stimuli even at high contrast was markedly impaired in some individuals. Our results imply age-related differences in the detection of peripheral moving stimuli at night that might impact hazard avoidance and night driving ability.


Asunto(s)
Envejecimiento/fisiología , Visión de Colores/fisiología , Sensibilidad de Contraste/fisiología , Visión Mesópica/fisiología , Percepción de Movimiento/fisiología , Anciano , Conducción de Automóvil , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valores de Referencia
20.
Ophthalmic Physiol Opt ; 41(2): 281-294, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33533095

RESUMEN

PURPOSE: This study examined the effectiveness of the LuxIQ, the Apple iPad and a smart bulb in assessing optimal colour and illumination to facilitate reading in younger, older and visually impaired adults. METHODS: Participants read standardised texts at baseline (normal lighting/no device), then using the Apple iPad, LuxIQ and smart bulb, with their normal vision (20/20 condition) and using a simulated reduction in visual acuity/contrast sensitivity (20/80 condition). Visually impaired participants followed the same procedure used in the 20/80 condition. RESULTS: There was a significant interaction between condition and device in younger, F(1.5, 43.51) = 30.41, p < 0.001, ω2  = 0.34 and older, F(1.5, 4.51) = 4.51, p = 0.03, ω2  = 0.05 adults with normal vision, and there was a significant effect of device, F(2, 58) = 5.95, p = 0.004, ω2  = 0.12 in visually impaired adults. In the 20/20 condition, age and colour predicted reading speed, F(3, 176) = 36.25, p < 0.001, Adj. R2  = 0.37, whereas age, lighting and colour predicted reading speed, F(3, 176) = 36.25, p < 0.001, Adj. R2  = 0.37 in the 20/80 condition. In the visual impairment condition, lighting, colour and impairment severity predicted reading speed, F(3, 85) = 10.10, p < 0.001, Adj. R2  = 0.24. CONCLUSIONS: The clinical implications of this study are that reading speeds improve in individuals with low vision under improved lighting conditions, specifically, with higher levels of luminance and colour temperature. The effectiveness of the devices varied across groups; however, the LuxIQ was the only device to improve reading speeds from baseline in older adults with visual impairments.


Asunto(s)
Visión de Colores/fisiología , Iluminación/normas , Lectura , Auxiliares Sensoriales/normas , Baja Visión/rehabilitación , Agudeza Visual , Personas con Daño Visual/rehabilitación , Anciano , Sensibilidad de Contraste/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Temperatura , Baja Visión/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA