Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Intervalo de año de publicación
1.
Phytopathology ; 114(5): 869-884, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38557216

RESUMEN

An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."


Asunto(s)
Insectos Vectores , Enfermedades de las Plantas , Xylella , Xilema , Xylella/fisiología , Xylella/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Xilema/microbiología , Animales , Insectos Vectores/microbiología , Olea/microbiología , Insectos/microbiología , Estados Unidos , Vitis/microbiología
2.
Plant Cell Rep ; 43(8): 190, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976088

RESUMEN

KEY MESSAGE: New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Péptidos , Enfermedades de las Plantas , Prunus dulcis , Xylella , Xylella/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Prunus dulcis/microbiología , Péptidos/farmacología , Péptidos/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad , Hojas de la Planta/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
3.
Plant Dis ; 108(6): 1555-1564, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38105458

RESUMEN

Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, has been found in all major grape-growing regions in California, U.S.A. Large collections of X. fastidiosa isolates are available from these areas, which enable comparative studies of pathogen genetic traits and virulence. Owing to the significant resource requirements for experiments with X. fastidiosa in grapevine, however, most studies use only a single isolate to evaluate disease, and it is not clear how much variability between isolates impacts disease development in experimental or natural settings. In this study, a comprehensive panel of X. fastidiosa isolates from all California grape-growing regions was tested for virulence in susceptible grapevine and in the model host plant, tobacco. Seventy-one isolates were tested, 29 in both grapevine and tobacco. The results of this study highlight the inherent variability of inoculation experiments with X. fastidiosa, including variation in disease severity in plants inoculated with a single isolate, and variability between experimental replicates. There were limited differences in virulence between isolates that were consistent across experimental replicates, or across different host plants. This suggests that choice of isolate within the X. fastidiosa subsp. fastidiosa Pierce's disease group may not make any practical difference when testing in susceptible grape varieties, and that pathogen evolution has not significantly changed virulence of Pierce's disease isolates within California. The location of isolation also did not dictate relative disease severity. This information will inform experimental design for future studies of X. fastidiosa in grapevine and provide important context for genomic research.


Asunto(s)
Enfermedades de las Plantas , Vitis , Xylella , Xylella/genética , Xylella/patogenicidad , Vitis/microbiología , Enfermedades de las Plantas/microbiología , California , Virulencia , Nicotiana/microbiología
4.
Appl Environ Microbiol ; 89(1): e0187322, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36598481

RESUMEN

Xylella fastidiosa is an important bacterial plant pathogen causing high-consequence diseases in agricultural crops around the world. Although as a species X. fastidiosa can infect many host plants, there is significant variability between strains regarding virulence on specific host plant species and other traits. Natural competence and horizontal gene transfer are believed to occur frequently in X. fastidiosa and likely influence the evolution of this pathogen. However, some X. fastidiosa strains are difficult to manipulate genetically using standard transformation techniques. Several type I restriction-modification (R-M) systems are encoded in the X. fastidiosa genome, which may influence horizontal gene transfer and recombination. Type I R-M systems themselves may undergo recombination, exchanging target recognition domains (TRDs) between specificity subunits (hsdS) to generate novel alleles with new target specificities. In this study, several conserved type I R-M systems were compared across 129 X. fastidiosa genome assemblies representing all known subspecies and 32 sequence types. Forty-four unique TRDs were identified among 50 hsdS alleles, which are arrayed in 31 allele profiles that are generally conserved within a monophyletic cluster of strains. Inactivating mutations were identified in type I R-M systems of specific strains, showing heterogeneity in the complements of functional type I R-M systems across X. fastidiosa. Genomic DNA methylation patterns were characterized in 20 X. fastidiosa strains and associated with type I R-M system allele profiles. Overall, these data suggest hsdS genes recombine among Xylella strains and/or unknown donors, and the resulting TRD reassortment establishes differential epigenetic modifications across Xylella lineages. IMPORTANCE Economic impacts on agricultural production due to X. fastidiosa have been severe in the Americas, Europe, and parts of Asia. Despite a long history of research on this pathogen, certain fundamental questions regarding the biology, pathogenicity, and evolution of X. fastidiosa have still not been answered. Wide-scale whole-genome sequencing has begun to provide more insight into X. fastidiosa genetic diversity and horizontal gene transfer, but the mechanics of genomic recombination in natural settings and the extent to which this directly influences bacterial phenotypes such as plant host range are not well understood. Genome methylation is an important factor in horizontal gene transfer and bacterial recombination that has not been comprehensively studied in X. fastidiosa. This study characterizes methylation associated with type I restriction-modification systems across a wide range of X. fastidiosa strains and lays the groundwork for a better understanding of X. fastidiosa biology and evolution through epigenetics.


Asunto(s)
Enfermedades de las Plantas , Xylella , Productos Agrícolas , Metilación de ADN , Transferencia de Gen Horizontal , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xylella/genética , Xylella/patogenicidad
5.
Proc Natl Acad Sci U S A ; 117(17): 9250-9259, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284411

RESUMEN

Xylella fastidiosa is the causal agent of plant diseases that cause massive economic damage. In 2013, a strain of the bacterium was, for the first time, detected in the European territory (Italy), causing the Olive Quick Decline Syndrome. We simulate future spread of the disease based on climatic-suitability modeling and radial expansion of the invaded territory. An economic model is developed to compute impact based on discounted foregone profits and losses in investment. The model projects impact for Italy, Greece, and Spain, as these countries account for around 95% of the European olive oil production. Climatic suitability modeling indicates that, depending on the suitability threshold, 95.5 to 98.9%, 99.2 to 99.8%, and 84.6 to 99.1% of the national areas of production fall into suitable territory in Italy, Greece, and Spain, respectively. For Italy, across the considered rates of radial range expansion the potential economic impact over 50 y ranges from 1.9 billion to 5.2 billion Euros for the economic worst-case scenario, in which production ceases after orchards die off. If replanting with resistant varieties is feasible, the impact ranges from 0.6 billion to 1.6 billion Euros. Depending on whether replanting is feasible, between 0.5 billion and 1.3 billion Euros can be saved over the course of 50 y if disease spread is reduced from 5.18 to 1.1 km per year. The analysis stresses the necessity to strengthen the ongoing research on cultivar resistance traits and application of phytosanitary measures, including vector control and inoculum suppression, by removing host plants.


Asunto(s)
Olea/microbiología , Enfermedades de las Plantas/microbiología , Xylella/metabolismo , Grecia , Italia , Modelos Económicos , Modelos Teóricos , Olea/metabolismo , España , Xylella/patogenicidad
6.
Microbiology (Reading) ; 167(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34596503

RESUMEN

Xylella fastidiosa is a vector-borne plant vascular pathogen that has caused devastating disease outbreaks in diverse agricultural crops worldwide. A major global quarantine pathogen, X. fastidiosa can infect hundreds of plant species and can be transmitted by many different xylem sap-feeding insects. Several decades of research have revealed a complex lifestyle dependent on adaptation to the xylem and insect environments and interactions with host plant tissues.


Asunto(s)
Productos Agrícolas/microbiología , Endófitos/patogenicidad , Enfermedades de las Plantas/microbiología , Xylella/patogenicidad , Animales , Endófitos/clasificación , Endófitos/fisiología , Genoma Bacteriano , Insectos Vectores/microbiología , Filogenia , Xylella/clasificación , Xylella/fisiología , Xilema/microbiología
7.
Phytopathology ; 111(11): 1994-2001, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33749331

RESUMEN

The aggressiveness of Spanish isolates of Xylella fastidiosa, representing different sequence types, were studied in almond plants of several cultivars by means of the dynamics of the population levels and symptoms, colonization and spread, and dose-effect relationships. Pathogen dynamics in almond plants under greenhouse conditions showed doubling times of 2.1 to 2.5 days during the exponential growth phase, with a maximum population size of about 35 days postinoculation (dpi). Differences in patterns in population dynamics were observed between sap and xylem tissue after the exponential growth, as population levels in the xylem tissue remained stable while viable cells in sap decreased. Population levels were higher in two upward zones than in the downward zone with respect to the inoculation area. The first symptoms were observed between 20 and 60 dpi, and disease severity increased over time at doubling times of 30 days, with a maximum observed at 120 dpi. Strains tested showed differences in population levels in the cultivars studied and were able to spread with different intensity from contaminated plant parts to new growing shoots after pruning. Two almond isolates showed different performance in dose-effect relationships when inoculated in cultivar Avijor. Whereas IVIA 5387.2 reached high population levels but showed high median effective dose (ED50) and minimal infective dose (MID) values, IVIA 5901.2 showed low population levels and low ED50 and MID values. This study has implications for the epidemiology of X. fastidiosa in almond crops, estimating doubling times of the pathogen in planta and of symptom development and showing differences in aggressiveness between strains.


Asunto(s)
Enfermedades de las Plantas/microbiología , Prunus dulcis , Xylella , Prunus dulcis/microbiología , Xylella/patogenicidad , Xilema
8.
Mol Plant Microbe Interact ; 33(3): 519-527, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31973654

RESUMEN

Xylella fastidiosa is a worldwide multihost pathogen that causes diseases in different crops. It is considered a new global threat and substantial efforts have been made in order to identify sources of resistance. Indeed, many genes have been associated with resistance to X. fastidiosa, but without functional validation. Here, we describe a C. reticulata gene homologous to the transcriptional factor RAP2.2 from Arabidopsis thaliana that increases resistance to citrus variegated chlorosis (CVC). This gene was previously detected in C. reticulata challenged with X. fastidiosa. Bioinformatics analysis together with subcellular localization and auto-activation assays indicated that RAP2.2 from C. reticulata (CrRAP2.2) is a transcriptional factor orthologous to AtRAP2.2. Thus, we used A. thaliana as a model host to evaluate the functional role of CrRAP2.2 in X. fastidiosa resistance. The inoculation of X. fastidiosa in the A. thaliana rap2.2 mutant resulted in a larger bacterial population, which was complemented by CrRAP2.2. In addition, symptoms of anthocyanin accumulation were higher in the mutant, whose phenotype was restored by CrRAP2.2, indicating that they have conserved functions in plant defense response. We therefore transformed C. sinensis with CrRAP2.2 and verified a positive correlation between CVC resistance and gene expression in transgenic lines. This is the first study using A. thaliana as model host that characterizes the function of a gene related to X. fastidiosa defense response and its application in genetic engineering to obtain citrus resistance to CVC.


Asunto(s)
Citrus/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Factores de Transcripción/genética , Xylella/patogenicidad , Arabidopsis , Proteínas de Arabidopsis , Citrus/microbiología , Proteínas de Unión al ADN , Enfermedades de las Plantas/microbiología
9.
Environ Microbiol ; 22(7): 2625-2638, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32114707

RESUMEN

Xylella fastidiosa subsp. fastidiosa causes Pierce's disease of grapevine (PD) and has been present in California for over a century. A singly introduced genotype spread across the state causing large outbreaks and damaging the grapevine industry. This study presents 122 X. fastidiosa subsp. fastidiosa genomes from symptomatic grapevines, and explores pathogen genetic diversity associated with PD in California. A total of 5218 single-nucleotide polymorphisms (SNPs) were found in the dataset. Strong population genetic structure was found; isolates split into five genetic clusters divided into two lineages. The core/soft-core genome constituted 41.2% of the total genome, emphasizing the high genetic variability of X. fastidiosa genomes. An ecological niche model was performed to estimate the environmental niche of the pathogen within California and to identify key climatic factors involved in dispersal. A landscape genomic approach was undertaken aiming to link local adaptation to climatic factors. A total of 18 non-synonymous polymorphisms found to be under selective pressures were correlated with at least one environmental variable highlighting the role of temperature, precipitation and elevation on X. fastidiosa adaptation to grapevines in California. Finally, the contribution to virulence of three of the genes under positive selective pressure and of one recombinant gene was studied by reverse genetics.


Asunto(s)
Genoma Bacteriano/genética , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Xylella/genética , Xylella/patogenicidad , California , Genotipo , Familia de Multigenes/genética , Polimorfismo Genético , Polimorfismo de Nucleótido Simple/genética , Virulencia/genética
10.
Rapid Commun Mass Spectrom ; 34 Suppl 3: e8745, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32053855

RESUMEN

RATIONALE: Xylella fastidiosa causes citrus variegated chlorosis (CVC) in sweet orange trees. A diagnostic method for detecting CVC before the symptoms appear, which would inform citrus producers in advance about when the plant should be removed from the orchard, is essential for reducing pesticide application costs. METHODS: Chemometrics was applied to high-performance liquid chromatography diode array detector (HPLC-DAD) data to evaluate the similarities and differences between the chromatographic profiles. A liquid chromatography/atmospheric pressure chemical ionization mass spectrometry selected reaction monitoring (LC/APCI-MS-SRM) method was developed to identify the major compounds and to determine their amounts in all samples. RESULTS: We evaluated the effect of this bacterium on the variation in the chemical profile in citrus plants. The organs of C. sinensis grafted on C. limonia were analyzed. Chemometrics was applied to the obtained data, and two major groups were differentiated. Flavonoids were observed in one group (leaves) and coumarins in the second (roots), both at higher concentrations in the plants with CVC symptoms than in those without the symptoms and those in the negative control. The rootstocks also interfered in the metabolism of the scion. CONCLUSIONS: The developed LC/APCI-MS-SRM method for detecting CVC before the symptoms appear is simple and accurate. It is inexpensive, and many samples can be screened per hour using 1 mg of leaves. Knowledge of the influence of the rootstock on the chemical profile of the graft is limited. This study demonstrates the effect of the rootstock in synthesizing flavonoids and increasing its content in all parts of the graft.


Asunto(s)
Citrus sinensis/química , Citrus sinensis/microbiología , Enfermedades de las Plantas/microbiología , Espectrometría de Masas en Tándem/métodos , Quimioinformática , Cromatografía Líquida de Alta Presión , Cumarinas/análisis , Resistencia a la Enfermedad , Fitomejoramiento/métodos , Hojas de la Planta/química , Hojas de la Planta/microbiología , Raíces de Plantas/química , Raíces de Plantas/microbiología , Tallos de la Planta/química , Tallos de la Planta/microbiología , Xylella/patogenicidad
11.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942709

RESUMEN

Xylella fastidiosa colonizes the xylem of various cultivated and native plants worldwide. Citrus production in Brazil has been seriously affected, and major commercial varieties remain susceptible to Citrus Variegated Chlorosis (CVC). Collective cellular behaviors such as biofilm formation influence virulence and insect transmission of X. fastidiosa. The reference strain 9a5c produces a robust biofilm compared to Fb7 that remains mostly planktonic, and both were isolated from symptomatic citrus trees. This work deepens our understanding of these distinct behaviors at the molecular level, by comparing the cellular and secreted proteomes of these two CVC strains. Out of 1017 identified proteins, 128 showed differential abundance between the two strains. Different protein families were represented such as proteases, hemolysin-like proteins, and lipase/esterases, among others. Here we show that the lipase/esterase LesA is among the most abundant secreted proteins of CVC strains as well, and demonstrate its functionality by complementary activity assays. More severe symptoms were observed in Nicotiana tabacum inoculated with strain Fb7 compared to 9a5c. Our results support that systemic symptom development can be accelerated by strains that invest less in biofilm formation and more in plant colonization. This has potential application in modulating the bacterial-plant interaction and reducing disease severity.


Asunto(s)
Citrus/microbiología , Virulencia/genética , Xylella/metabolismo , Xylella/patogenicidad , Biopelículas/crecimiento & desarrollo , Brasil , Esterasas/metabolismo , Lipasa/metabolismo , Enfermedades de las Plantas/microbiología , Proteoma/metabolismo , Nicotiana/microbiología , Xylella/genética
13.
Phytochem Anal ; 30(6): 623-634, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31020714

RESUMEN

INTRODUCTION: Xylella fastidiosa (Xf) is a pathogenic bacterium that causes diseases in olive trees. Therefore, analytical methods for both the characterisation of the host/pathogen interaction and infection monitoring are needed. Volatile organic compounds (VOCs) are emitted by plants relate to their physiological state, therefore VOCs monitoring can assist in detecting stress or infection states before visible signs are present. OBJECTIVE: In this work, the headspace-solid phase microextraction-gaschromatography-mass spectrometry (HS-SPME-GC-MS) technique was used for the first time to highlight VOCs differences between healthy and Xf-infected olive trees. METHODOLOGY: VOCs from olive tree twig samples were extracted and analysed by HS-SPME-GC-MS, and hence identified by comparing the experimental linear retention indexes with the reference values and by MS data obtained from NIST library. Data were processed by principal component analysis (PCA) and analysis of variance (ANOVA). RESULTS: The HS-SPME step was optimised in terms of adsorbent phase and extraction time. HS-SPME-GC-MS technique was applied to the extraction and analysis of VOCs of healthy and Xf-infected olive trees. More than 100 compounds were identified and the differences between samples were evidenced by the multivariate analysis approach. The results showed the marked presence of methyl esters in Xf-infected samples, suggesting their probable involvement in the mechanism of diffusible signal factor. CONCLUSION: The proposed approach represents an easy and solvent-free method to evaluate the presence of Xf in olive trees, and to evidence volatiles produced by host/pathogen interactions that could be involved in the defensive mechanism of the olive tree and/or in the infective action of Xf.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Olea/química , Olea/microbiología , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis , Xylella/patogenicidad , Análisis Multivariante , Olea/clasificación
14.
Curr Issues Mol Biol ; 25: 199-222, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28875945

RESUMEN

Plant pathogenic bacteria are responsible for the loss of hundreds of millions of dollars each year, impacting a wide range of economically relevant agricultural crops. The plant immune system detects conserved bacterial molecules and deploys an arsenal of effective defense measures at different levels; however, during compatible interactions, some pathogenic bacteria suppress and manipulate the host immunity and colonize and infect the plant host. Different bacteria employ similar strategies to circumvent plant innate immunity, while other tactics are specific to certain bacterial species. Recent studies have highlighted the secondary messenger c-di-GMP as a key molecule in the transmission of environmental cues in an intracellular regulatory network that controls virulence traits in many plant pathogenic bacteria. In this review, we focus on the recent knowledge of the molecular basis of c-di-GMP signaling mechanisms that promote or prevent the evasion of bacterial phytopathogens from the plant immune system. This review will highlight the considerable diversity of mechanisms evolved in plant-associated bacteria to elude plant immunity.


Asunto(s)
Productos Agrícolas/microbiología , GMP Cíclico/análogos & derivados , Evasión Inmune , Oryza/microbiología , Inmunidad de la Planta/genética , Productos Agrícolas/genética , Productos Agrícolas/inmunología , GMP Cíclico/biosíntesis , GMP Cíclico/inmunología , Defensinas/biosíntesis , Defensinas/inmunología , Erwinia amylovora/genética , Erwinia amylovora/inmunología , Erwinia amylovora/patogenicidad , Regulación de la Expresión Génica , Oryza/genética , Oryza/inmunología , Oxilipinas/inmunología , Oxilipinas/metabolismo , Pseudomonas syringae/genética , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Sesquiterpenos/inmunología , Sesquiterpenos/metabolismo , Transducción de Señal , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/inmunología , Virulencia , Xanthomonas/genética , Xanthomonas/inmunología , Xanthomonas/patogenicidad , Xylella/genética , Xylella/inmunología , Xylella/patogenicidad , Fitoalexinas
15.
Biochem Biophys Res Commun ; 502(2): 173-182, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29887124

RESUMEN

Recently, the emergence of an important alien plant pathogen in Europe was evident when the Olive Quick Decline Syndrome (OQDS), a previously unknown disease causing rapid scorching and death of the trees, invested with particular virulence a substantial portion of the vast olive wood of Southern Italy (Salento, part of the Apulia region). Early evidence indicated a connection between the OQDS and the gram-negative bacterium Xylella fastidiosa. This bacterium can target several important crops, so that researchers from all over the world have investigated its association with host plants and vectors, the molecular biology of the infection mechanism, and the molecular reaction of the infected plants. Potentially resistant or tolerant cultivars and molecular targets which might be useful to control the infection have been identified. In vitro tests of compounds active against Xylella have also been performed. In this contribution, the literature and the available data will be reviewed to provide an up-to-date picture of the currently available knowledge on the role of Xylella in OQDS, and in diseases of other plants, with focus on the emerging threats to European farming.


Asunto(s)
Olea/microbiología , Enfermedades de las Plantas/microbiología , Xylella/patogenicidad , Agricultura , Animales , Ecosistema , Europa (Continente) , Interacciones Huésped-Patógeno , Insectos Vectores/microbiología , Biología Molecular , Enfermedades de las Plantas/prevención & control , Xylella/genética , Xylella/aislamiento & purificación
16.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29980551

RESUMEN

Twitching motility is one of the major virulence factors of the plant-pathogenic bacterium Xylella fastidiosa, and it is mediated by type IV pili (TFP) that are present at one of the cell poles. Genome analysis of X. fastidiosa showed the presence of at least four paralogs of the gene pilA, which encodes the TFP major pilin subunit. However, whether all of these paralogs have a functional role in TFP structure and function is unknown. Here, using a short and reliable protocol based on overlap extension PCR and natural transformation, deletion mutants of two pilA paralogs (pilA1 PD1924 and pilA2 PD1926) were generated in two X. fastidiosa subsp. fastidiosa strains, WM1-1 and TemeculaL, followed by assessment of twitching motility and biofilm formation. Deletion of pilA2 caused loss of twitching motility, whereas deletion of pilA1 did not influence twitching motility but caused hyperpiliation and extended distribution of TFP along the sides of the cell. Loss of twitching motility due to pilA2 deletion was restored when a wild-type copy of the pilA2 gene was added at a neutral site in the genome of mutants in both wild-type backgrounds. This study demonstrates that PCR templates generated by overlap extension PCR can be successfully used to rapidly generate gene knockouts and perform genetic complementation in X. fastidiosa, and that twitching motility in X. fastidiosa is controlled by regulating the transcription of the major pilin subunit, pilA2IMPORTANCE The bacterial plant pathogen Xylella fastidiosa causes incurable diseases in multiple hosts, including grape, citrus, and blueberry. Historically restricted to the Americas, it was recently found to cause epidemics in olives in Italy and to infect other hosts in Europe and Asia. In this study, we report a short protocol to create deletion and complemented mutants using fusion PCR and natural transformation. We also determined the distinct function of two pilin paralogs, the main structural component of TFP involved in twitching motility, which allows this bacterium to move inside the xylem vessels against the flow. One of the paralogs is needed for twitching movement, whereas the other does not have an effect on motility but influences the number and position of TFP. Since twitching motility is fundamental for the virulence of this xylem-limited bacterium, this study contributes to the understanding of the regulation of virulence by this pathogen.


Asunto(s)
Proteínas Fimbrias/genética , Fimbrias Bacterianas/fisiología , Xylella/fisiología , Xylella/patogenicidad , Proteínas Fimbrias/metabolismo , Técnicas de Inactivación de Genes , Virulencia/genética , Xylella/genética
18.
Proteins ; 85(10): 1931-1943, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28677327

RESUMEN

Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein.


Asunto(s)
Proteínas Bacterianas/química , Plantas/microbiología , Xylella/química , Cristalografía por Rayos X , Dispersión del Ángulo Pequeño , Xylella/patogenicidad
19.
Mol Plant Microbe Interact ; 30(7): 589-600, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28459171

RESUMEN

Xylella fastidiosa, an etiological agent of emerging crop diseases around the world, is naturally competent for the uptake of DNA from the environment that is incorporated into its genome by homologous recombination. Homologous recombination between subspecies of X. fastidiosa was inferred by in silico studies and was hypothesized to cause disease emergence. However, no experimental data are available on the degree to which X. fastidiosa strains are capable of competence and whether recombination can be experimentally demonstrated between subspecies. Here, using X. fastidiosa strains from different subspecies, natural competence in 11 of 13 strains was confirmed with plasmids containing antibiotic markers flanked by homologous regions and, in three of five strains, with dead bacterial cells used as source of donor DNA. Recombination frequency differed among strains and was correlated to growth rate and twitching motility. Moreover, intersubspecific recombination occurred readily between strains of subsp. fastidiosa and multiplex, as demonstrated by movement of antibiotic resistance and green fluorescent protein from donor to recipient cells and confirmed by DNA sequencing of the flanking arms of recombinant strains. Results demonstrate that natural competence is widespread among X. fastidiosa strains and could have an impact in pathogen adaptation and disease development.


Asunto(s)
ADN Bacteriano/genética , Variación Genética , Recombinación Homóloga , Xylella/genética , Adaptación Fisiológica/genética , Productos Agrícolas/microbiología , Enfermedades de las Plantas/microbiología , Plásmidos/genética , Especificidad de la Especie , Virulencia/genética , Xylella/clasificación , Xylella/patogenicidad
20.
Mol Plant Microbe Interact ; 30(11): 896-905, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28800709

RESUMEN

MopB is a major outer membrane protein (OMP) in Xylella fastidiosa, a bacterial plant pathogen that causes losses on many economically important crops. Based on in silico analysis, the uncharacterized MopB protein of X. fastidiosa contains a ß-barrel structure with an OmpA-like domain and a predicted calcium-binding motif. Here, MopB function was studied by mutational analysis taking advantage of the natural competence of X. fastidiosa. Mutants of mopB were constructed in two different X. fastidiosa strains, the type strain Temecula and the more virulent WM1-1. Deletion of the mopB gene impaired cell-to-cell aggregation, surface attachment, and biofilm formation in both strains. Interestingly, mopB deletion completely abolished twitching motility. Electron microscopy of the bacterial cell surface revealed that mopB deletion eliminated type IV and type I pili formation, potentially caused by destabilization of the outer membrane. Both mopB mutants showed reduced virulence using tobacco (Nicotiana tabacum) as a host under greenhouse conditions. These results suggest that MopB has pleiotropic functions in biofilm formation and twitching motility and is important for virulence of X. fastidiosa.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Xylella/fisiología , Xylella/patogenicidad , Agregación Celular , Recuento de Colonia Microbiana , Simulación por Computador , Técnicas de Inactivación de Genes , Movimiento , Mutación/genética , Plancton/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Virulencia , Xylella/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA