Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Andrologia ; 53(4): e13983, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33474736

RESUMO

In this study, we examined the adverse consequences of prolonged treatment with sildenafil and/or clomipramine (CLO) on the hepatic, cardiac and testicular tissues of rats. Additionally, we investigated the potential effects of treatment discontinuation. To this end, 60 adult male rats were randomly assigned into six groups and were orally treated with 4.5 mg sildenafil /kg BW (SLD) and 9 mg/ kg BW (SHD), 2.25 mg CLO/kg BW (CLO), 4.5 mg sildenafil/kg BW + 2.25 mg CLO/kg BW (SLD-CLO) and 9 mg sildenafil/kg BW + 2.25 mg CLO/kg BW (SHD-CLO) while the control rats received 0.5 ml distilled water for 8 weeks. Then, five rats from each group were sacrificed and the other five rats were left untreated for another four weeks to recover from the drug treatment. Long-term administration of sildenafil and/or CLO led to oxidative stress, inflammation and structural changes in the liver, heart and testis, reduction in sperm count and motility, an increase in abnormalities, and a reduction in serum testosterone, FSH and LH levels. All tested parameters returned to the normal state following the four-week discontinuation of sildenafil. Additionally, all the alterations caused by long-term administration of CLO, SLD-CLO and SHD-CLO were significantly improved during the recovery period.


Assuntos
Clomipramina , Testículo , Animais , Clomipramina/toxicidade , Humanos , Fígado , Masculino , Ratos , Citrato de Sildenafila , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides , Testosterona
2.
Cells Tissues Organs ; 199(4): 278-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25613352

RESUMO

This study was conducted to identify the regulation of the expression of the cEbf1-3 (chick early B-cell factor 1-3) genes in the pharyngeal arches (PAs), cranial sensory ganglia and placodes. cEbf1 and cEbf3 were mainly expressed in the cranial neural crest cells (NCCs) occupying the PAs, but cEbf2 was expressed in the mesenchymal core. cEbf1-3 were prominently expressed in the olfactory placodes, but cEbf1 and cEbf3 were only expressed in the otic vesicle. cEbf1 was expressed in all cranial sensory ganglia, cEbf2 (only) in the dorsolateral ganglia and cEbf3 in the trigeminal and vestibular ganglia. The removal of the source (the cranial neural tube) of the cranial NCCs before their migration to the PAs led to downregulation of cEbf1 and cEbf3 and upregulation of cEbf2 expression. Gain- and loss-of-function experiments showed that sonic hedgehog did not regulate cEbf1-3 expression in the PAs or associated ganglia. Bone morphogenetic protein 2 (Bmp2) can, however, directly and indirectly regulate cEbf1 and cEbf3 expression in the PAs and the proximal (NCC-derived) portion, but not the distal (placodal-derived) portion of the cranial sensory ganglia. Conversely, cEbf2 expression was upregulated following injection of Noggin before the migration of NCCs, but did not change after the overexpression of either Noggin or Bmp2 in the arch after NCC migration. In conclusion, Bmp2 regulates cEbf1 and cEbf3 expression in PAs and cranial sensory ganglia both directly and indirectly, via the migration of cranial NCCs. However, cEbf2 expression in the mesenchymal core of PAs is controlled by other undetermined signals.


Assuntos
Proteínas Aviárias/genética , Região Branquial/metabolismo , Gânglios Sensitivos/metabolismo , Transativadores/genética , Animais , Embrião de Galinha , Expressão Gênica , Especificidade de Órgãos
3.
Front Vet Sci ; 8: 696841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336981

RESUMO

Improving the nutritional quality of unconventional feed ingredients such as fava bean by-products can enhance their utilization by broiler chickens. Hence, the quality of fermented fava bean by-products (FFB), in addition to growth, nutrient digestibility, digestive enzyme, and intestinal barrier-related gene expression, and serum biochemical and immunological parameters were evaluated in response to different levels of FFB. A total of 500 1-day-old broiler chicks (46.00 ± 0.388 g) were allocated to five groups with 10 replicates each (100 chicks per treatment). The first group was fed a corn-soybean diet (control diet), and the other four groups were fed a diet containing 5, 15, 25, and 35% FFB for 38 days. Birds fed 25% FFB exhibited maximum body weight gain (increase by 12.5%, compared with the control group) and the most improved feed conversion ratio. Additionally, birds fed FFB at 15, 25, and 35% showed improved dry matter and crude protein digestibility. Moreover, birds fed FFB at 25 and 35% exhibited a decrease in ileal pH and an increase in fiber digestibility (p < 0.05). Upregulation of digestive enzyme genes (AMY2A, PNLIP, and CCK) was observed in groups fed with FFB. The most prominent upregulation of genes encoding tight junction proteins (claudin-1, occludin, and junctional adhesion molecules) in the duodenum was observed in chicks fed 25 and 35% FFB (increase of 0.66-, 0.31-, and 1.06-fold and 0.74-, 0.44-, and 0.92-fold, respectively). Additionally, the highest expression level of enterocyte protective genes [glucagon-like peptide (GLP-2), mucin-2 (MUC-2), and fatty acid-binding protein (FABP-6)] was detected in duodenum of chicks fed high levels of FFB. Substitution of corn-soybean diet with FFB had an inhibitory effect on cecal pathogenic microbes (Escherichia coli and Clostridium perfringens) and increased beneficial microflora (Lactobacilli and Bifidobacterium), especially at high levels. Additionally, an increase was observed in IgM and lysozyme activity, with no effect on IgA in all groups fed FFB. All levels of FFB decreased cholesterol levels. Based on our results, we concluded that substitution of corn-soybean diet with FFB can improve the growth rate and nutrient digestibility of broiler chickens, enhance their intestinal barrier functions, and increase the number of beneficial microorganisms. Using FFB at 25% had a positive effect on the growth performance of broiler chickens, and it could be utilized in poultry farms.

4.
Front Vet Sci ; 7: 584921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251266

RESUMO

Antibiotic growth promoters have been used to improve growth and feed conversion in the poultry industry for a long time; however, they were banned because of several life-threatening side effects in animals, poultry, and humans. This work was carried out to investigate the effect of leek (Allium ampeloprasum var. kurrat) leaf extract (LLE) as a non-traditional growth promoter and feed additive on growth performance, carcass characteristics, serum biochemical parameters, and economic efficiency of broilers. Hubbard unsexed 1-day-old broilers (n = 250) were fed with diets supplemented with LLE for 42 days. The experimental chicks were randomly assigned to one of the five treatment groups varying in LLE quantity in diets: 0% (control), 0.05, 0.1, 0.15, and 0.2%, with five replicates per treatment (50 chicks/treatment or 10 chicks/replicate). Results showed that LLE supplementation improved (P < 0.05) different growth performance parameters. Furthermore, dietary LLE not only decreased serum total cholesterol, triglyceride, low-density lipoprotein, and glucose levels but also increased serum high-density lipoprotein level compared to the control diet. The weight percentages of dressing (P = 0.022) and liver (P = 0.041) showed a marked increase after the addition of LLE. Return, net profit, and collective efficiency measures were increased (P = 0.001) in all LLE groups compared with the control group. Broilers that fed on diets containing 0.2% LLE showed the highest growth and economic efficiency. It could be concluded that supplementation with LLE in broilers has growth-promoting effects, improved biochemical parameters, carcass quality, and promoted economic efficiency through maximizing both return and net profit.

5.
Environ Sci Pollut Res Int ; 27(17): 20861-20875, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32246429

RESUMO

Tilmicosin (Til) was purposed to be used in the treatment of a wide range of respiratory diseases in livestock. However, undesirable adverse effects, cardiac toxicity, in particular, may be associated with Til therapy. In the present study, the response of adult rats administered Til subcutaneously at different doses (10, 25, 50, 75, and 100 mg/kg b.w.; single injection) was evaluated. Astragalus polysaccharide (AP) at two doses (100 and 200 mg/kg b.w.; intraperitoneally) was investigated for its potential to counteract the cardiac influences, involving the oxidative stress-induced damage and apoptotic cell death, elicited by the Til treatment at a dose of 75 mg/kg b.w. in rats. Til induced mortalities and altered the levels of the biomarkers for the cardiac damage, particularly in the rats treated with the doses of 75 and 100 mg/kg b.w.; similarly, morphological alterations in cardiac tissue were seen at all studied doses. AP was found to cause a significant (P Ë‚ 0.05) decline in the levels of impaired cardiac injury markers (troponin, creatine phosphokinase, and creatine phosphokinase-MB), improvement in the antioxidant endpoints (total antioxidant capacity), and attenuation in the oxidative stress indices (total reactive oxygen species, 8-hydroxy-2-deoxyguanosine, lipid peroxides [malondialdehyde], and protein carbonyl), associated with a significant (P Ë‚ 0.05) modulation in the mRNA expression levels of the encoding genes (Bcl-2, Bax, caspase-3, P53, Apaf-1, and AIF), related to the intrinsic pathway of apoptotic cell death in the cardiac tissue. AP administration partially restored the morphological changes in the rat's heart. The highest protective efficacy of AP was recorded at a dose level of 200 mg/kg b.w. Taken together, these results indicated that AP is a promising cardioprotective compound capable of attenuating Til-induced cardiac impact by protecting the rat cardiac tissue from Til-induced apoptosis when administered concurrently with and after the Til injection.


Assuntos
Astrágalo , Animais , Antioxidantes , Apoptose , Estresse Oxidativo , Polissacarídeos , Ratos , Tilosina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA