Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(22): 4920-4935.e23, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37776859

RESUMO

SpCas9 and AsCas12a are widely utilized as genome-editing tools in human cells. However, their relatively large size poses a limitation for delivery by cargo-size-limited adeno-associated virus (AAV) vectors. The type V-F Cas12f from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been harnessed as a compact genome-editing tool. Here, we developed an approach, combining deep mutational scanning and structure-informed design, to successfully generate two AsCas12f activity-enhanced (enAsCas12f) variants. Remarkably, the enAsCas12f variants exhibited genome-editing activities in human cells comparable with those of SpCas9 and AsCas12a. The cryoelectron microscopy (cryo-EM) structures revealed that the mutations stabilize the dimer formation and reinforce interactions with nucleic acids to enhance their DNA cleavage activities. Moreover, enAsCas12f packaged with partner genes in an all-in-one AAV vector exhibited efficient knock-in/knock-out activities and transcriptional activation in mice. Taken together, enAsCas12f variants could offer a minimal genome-editing platform for in vivo gene therapy.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Camundongos , Microscopia Crioeletrônica , Mutação , Terapia Genética
2.
Genes Dev ; 36(21-24): 1145-1159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36617881

RESUMO

In most eukaryotes, constitutive heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), is enriched on repetitive DNA, such as pericentromeric repeats and transposons. Furthermore, repetitive transgenes also induce heterochromatin formation in diverse model organisms. However, the mechanisms that promote heterochromatin formation at repetitive DNA elements are still not clear. Here, using fission yeast, we show that tandemly repeated mRNA genes promote RNA interference (RNAi)-mediated heterochromatin formation in cooperation with an antisilencing factor, Epe1. Although the presence of tandemly repeated genes itself does not cause heterochromatin formation, once complementary small RNAs are artificially supplied in trans, the RNAi machinery assembled on the repeated genes starts producing cognate small RNAs in cis to autonomously maintain heterochromatin at these sites. This "repeat-induced RNAi" depends on the copy number of repeated genes and Epe1, which is known to remove H3K9me and derepress the transcription of genes underlying heterochromatin. Analogous to repeated genes, the DNA sequence underlying constitutive heterochromatin encodes widespread transcription start sites (TSSs), from which Epe1 activates ncRNA transcription to promote RNAi-mediated heterochromatin formation. Our results suggest that when repetitive transcription units underlie heterochromatin, Epe1 generates sufficient transcripts for the activation of RNAi without disruption of heterochromatin.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Interferência de RNA , Heterocromatina/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(31): e2308750120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487068

RESUMO

Adipose tissue is central to regulation of energy homeostasis. Adaptive thermogenesis, which relies on mitochondrial oxidative phosphorylation (Ox-Phos), dissipates energy to counteract obesity. On the other hand, chronic inflammation in adipose tissue is linked to type 2 diabetes and obesity. Here, we show that nuclear factor I-A (NFIA), a transcriptional regulator of brown and beige adipocytes, improves glucose homeostasis by upregulation of Ox-Phos and reciprocal downregulation of inflammation. Mice with transgenic expression of NFIA in adipocytes exhibited improved glucose tolerance and limited weight gain. NFIA up-regulates Ox-Phos and brown-fat-specific genes by enhancer activation that involves facilitated genomic binding of PPARγ. In contrast, NFIA in adipocytes, but not in macrophages, down-regulates proinflammatory cytokine genes to ameliorate adipose tissue inflammation. NFIA binds to regulatory region of the Ccl2 gene, which encodes proinflammatory cytokine MCP-1 (monocyte chemoattractant protein-1), to down-regulate its transcription. CCL2 expression was negatively correlated with NFIA expression in human adipose tissue. These results reveal the beneficial effect of NFIA on glucose and body weight homeostasis and also highlight previously unappreciated role of NFIA in suppressing adipose tissue inflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Fatores de Transcrição NFI , Humanos , Animais , Camundongos , Adipócitos , Homeostase , Inflamação , Tecido Adiposo Marrom , Citocinas
4.
Cancer Sci ; 115(5): 1706-1717, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433527

RESUMO

The majority of low-grade isocitrate dehydrogenase-mutant (IDHmt) gliomas undergo malignant progression (MP), but their underlying mechanism remains unclear. IDHmt gliomas exhibit global DNA methylation, and our previous report suggested that MP could be partly attributed to passive demethylation caused by accelerated cell cycles. However, during MP, there is also active demethylation mediated by ten-eleven translocation, such as DNA hydroxymethylation. Hydroxymethylation is reported to potentially contribute to gene expression regulation, but its role in MP remains under investigation. Therefore, we conducted a comprehensive analysis of hydroxymethylation during MP of IDHmt astrocytoma. Five primary/malignantly progressed IDHmt astrocytoma pairs were analyzed with oxidative bisulfite and the Infinium EPIC methylation array, detecting 5-hydroxymethyl cytosine at over 850,000 locations for region-specific hydroxymethylation assessment. Notably, we observed significant sharing of hydroxymethylated genomic regions during MP across the samples. Hydroxymethylated CpGs were enriched in open sea and intergenic regions (p < 0.001), and genes undergoing hydroxymethylation were significantly associated with cancer-related signaling pathways. RNA sequencing data integration identified 91 genes with significant positive/negative hydroxymethylation-expression correlations. Functional analysis suggested that positively correlated genes are involved in cell-cycle promotion, while negatively correlated ones are associated with antineoplastic functions. Analyses of The Cancer Genome Atlas clinical data on glioma were in line with these findings. Motif-enrichment analysis suggested the potential involvement of the transcription factor KLF4 in hydroxymethylation-based gene regulation. Our findings shed light on the significance of region-specific DNA hydroxymethylation in glioma MP and suggest its potential role in cancer-related gene expression and IDHmt glioma malignancy.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioma , Isocitrato Desidrogenase , Fator 4 Semelhante a Kruppel , Mutação , Humanos , Isocitrato Desidrogenase/genética , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ilhas de CpG/genética , Feminino , Masculino , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/metabolismo , Pessoa de Meia-Idade , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto
5.
EMBO J ; 39(7): e103949, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125007

RESUMO

Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.


Assuntos
Células Endoteliais/imunologia , Histona Desmetilases/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , MicroRNAs/genética , Animais , Adesão Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Histonas/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisina/metabolismo , Masculino , Metilação , Camundongos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
6.
J Pathol ; 260(2): 124-136, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36806225

RESUMO

Epstein-Barr virus (EBV) is one of the major drivers of gastric carcinogenesis. EBV infection is established before tumour initiation and is generally maintained throughout tumour development; however, the significance of EBV in tumour maintenance and progression remains to be elucidated. Here, we report eight cases of EBV-associated gastric carcinoma (EBVaGC) with intratumoural heterogenous expression of EBV-encoded small RNA (EBER), a highly expressed latent gene of EBV, and demonstrate clinicopathological characteristics of these rare cases. By performing detailed histological assessment of EBER-positive and -negative components of each case, detection of EBV genome in tumour cells by fluorescence in situ hybridisation, TP73 methylation analysis, whole exome sequencing, and targeted gene panel sequencing, we identified tumours in two patients to be collision tumours of different origins. In the other six patients, some genetic/epigenetic alterations were shared between EBER-positive and -negative components, suggesting that EBV was eliminated from tumour cells during progression. Interestingly, in both tumour types, programmed death ligand 1 and intratumoural infiltration of CD8+ T lymphocytes were lower in EBER-negative than in EBER-positive components, suggesting an immunogenic role of EBV. To the best of our knowledge, this study is the first to demonstrate the detailed histological features and genetic/epigenetic alterations in EBVaGC with heterogenous EBER expression; the loss of EBV may benefit tumour progression and immune evasion and might be clinically important for selecting treatment strategies for such cancers. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Genoma Viral , Carcinoma/genética , RNA Viral/genética , Microambiente Tumoral
7.
Cell ; 136(3): 535-50, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19203586

RESUMO

p53 And Akt are critical players regulating tumorigenesis with opposite effects: whereas p53 transactivates target genes to exert its function as a tumor suppressor, Akt phosphorylates its substrates and transduces downstream survival signals. In addition, p53 and Akt negatively regulate each other to balance survival and death signals within a cell. We now identify PHLDA3 as a p53 target gene that encodes a PH domain-only protein. We find that PHLDA3 competes with the PH domain of Akt for binding of membrane lipids, thereby inhibiting Akt translocation to the cellular membrane and activation. Ablation of endogenous PHLDA3 results in enhanced Akt activity and decrease of p53-dependent apoptosis. We also demonstrate the suppression of anchorage-independent cell growth by PHLDA3. Loss of the PHLDA3 genomic locus was frequently observed in primary lung cancers, suggesting a role of PHLDA3 in tumor suppression. Our results reveal a new mode of coordination between the p53 and Akt pathways.


Assuntos
Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Proteína Oncogênica v-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Transdução de Sinais
8.
Mol Cell ; 64(1): 176-188, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716482

RESUMO

How deregulation of chromatin modifiers causes malignancies is of general interest. Here, we show that histone H2A T120 is phosphorylated in human cancer cell lines and demonstrate that this phosphorylation is catalyzed by hVRK1. Cyclin D1 was one of ten genes downregulated upon VRK1 knockdown in two different cell lines and showed loss of H2A T120 phosphorylation and increased H2A K119 ubiquitylation of its promoter region, resulting in impaired cell growth. In vitro, H2A T120 phosphorylation and H2A K119 ubiquitylation are mutually inhibitory, suggesting that histone phosphorylation indirectly activates chromatin. Furthermore, expression of a phosphomimetic H2A T120D increased H3 K4 methylation. Finally, both VRK1 and the H2A T120D mutant histone transformed NIH/3T3 cells. These results suggest that histone H2A T120 phosphorylation by hVRK1 causes inappropriate gene expression, including upregulated cyclin D1, which promotes oncogenic transformation.


Assuntos
Transformação Celular Neoplásica/genética , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromatina/química , Cromatina/metabolismo , Ciclina D1/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metilação , Camundongos , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fosforilação , Protamina Quinase/genética , Protamina Quinase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Treonina/metabolismo , Ubiquitinação
9.
Genes Chromosomes Cancer ; 62(1): 47-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35906852

RESUMO

Neurotropic tropomyosin receptor kinase (NTRK) gene rearrangements have been reported in limited cases of sarcomas; however, to date, there has been only one report of such rearrangements in malignant peripheral nerve sheath tumors (MPNSTs). Herein, we describe a 51-year-old male patient with a buttock tumor arising from the sciatic nerve, which was diagnosed as MPNST with positive S-100 staining, negative SOX10 staining, and loss of trimethylation at lysine 27 of histone H3 (H3K27me3) confirmed by immunohistochemistry. Soon after the resection of the primary tumor, the patient was found to have pulmonary and lymph node metastases. Chemotherapy with eribulin and trabectedin showed limited effects. However, the patient responded rapidly to pazopanib, but severe side effects caused discontinuation of the treatment. RNA panel testing revealed a novel fusion gene between Small Nuclear Ribonucleoprotein U1 Subunit 70 (SNRNP70) gene and NTRK3 gene. Furthermore, loss of NF1, SUZ12, and CDKN2A genes was confirmed by DNA panel testing, which is compatible with a histological diagnosis of MPNST. SNRNP70 possesses a coiled-coiled domain and seems to induce constitutive activation of NTRK3 through dimerization. In fact, immunohistochemistry revealed diffuse staining of pan-TRK within tumor cells. Treatment with entrectinib, which is an NTRK inhibitor, showed a quick and durable response for 10 months. Although NTRK rearrangements are very rare in MPNST, this case highlights the importance of genetic testing in MPNST, especially using an RNA panel for the detection of rare fusion genes.


Assuntos
Neurofibrossarcoma , Masculino , Humanos , Pessoa de Meia-Idade , Neurofibrossarcoma/tratamento farmacológico , Neurofibrossarcoma/genética , Biomarcadores Tumorais/genética , Imuno-Histoquímica , RNA , Ribonucleoproteína Nuclear Pequena U1
10.
Cancer Sci ; 114(4): 1710-1717, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36601953

RESUMO

Comprehensive cancer genome profiling (CGP) has been nationally reimbursed in Japan since June 2019. Less than 10% of the patients have been reported to undergo recommended treatment. Todai OncoPanel (TOP) is a dual DNA-RNA panel as well as a paired tumor-normal matched test. Two hundred patients underwent TOP as part of Advanced Medical Care B with approval from the Ministry of Health, Labour and Welfare between September 2018 and December 2019. Tests were carried out in patients with cancers without standard treatment or when patients had already undergone standard treatment. Data from DNA and RNA panels were analyzed in 198 and 191 patients, respectively. The percentage of patients who were given therapeutic or diagnostic recommendations was 61% (120/198). One hundred and four samples (53%) harbored gene alterations that were detected with the DNA panel and had potential treatment implications, and 14 samples (7%) had a high tumor mutational burden. Twenty-two samples (11.1%) harbored 30 fusion transcripts or MET exon 14 skipping that were detected by the RNA panel. Of those 30 transcripts, 6 had treatment implications and 4 had diagnostic implications. Thirteen patients (7%) were found to have pathogenic or likely pathogenic germline variants and genetic counseling was recommended. Overall, 12 patients (6%) received recommended treatment. In summary, patients benefited from both TOP DNA and RNA panels while following the same indication as the approved CGP tests. (UMIN000033647).


Assuntos
Genômica , Neoplasias , Humanos , Japão , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão
11.
Br J Cancer ; 128(12): 2206-2217, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076565

RESUMO

BACKGROUND: Driver alterations may represent novel candidates for driver gene-guided therapy; however, intrahepatic cholangiocarcinoma (ICC) with multiple genomic aberrations makes them intractable. Therefore, the pathogenesis and metabolic changes of ICC need to be understood to develop new treatment strategies. We aimed to unravel the evolution of ICC and identify ICC-specific metabolic characteristics to investigate the metabolic pathway associated with ICC development using multiregional sampling to encompass the intra- and inter-tumoral heterogeneity. METHODS: We performed the genomic, transcriptomic, proteomic and metabolomic analysis of 39-77 ICC tumour samples and eleven normal samples. Further, we analysed their cell proliferation and viability. RESULTS: We demonstrated that intra-tumoral heterogeneity of ICCs with distinct driver genes per case exhibited neutral evolution, regardless of their tumour stage. Upregulation of BCAT1 and BCAT2 indicated the involvement of 'Val Leu Ile degradation pathway'. ICCs exhibit the accumulation of ubiquitous metabolites, such as branched-chain amino acids including valine, leucine, and isoleucine, to negatively affect cancer prognosis. We revealed that this metabolic pathway was almost ubiquitously altered in all cases with genomic diversity and might play important roles in tumour progression and overall survival. CONCLUSIONS: We propose a novel ICC onco-metabolic pathway that could enable the development of new therapeutic interventions.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Proteômica , Aminoácidos de Cadeia Ramificada , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Transaminases
12.
Gastroenterology ; 162(3): 799-812, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687740

RESUMO

BACKGROUND & AIMS: A detailed understanding of antitumor immunity is essential for optimal cancer immune therapy. Although defective mutations in the B2M and HLA-ABC genes, which encode molecules essential for antigen presentation, have been reported in several studies, the effects of these defects on tumor immunity have not been quantitatively evaluated. METHODS: Mutations in HLA-ABC genes were analyzed in 114 microsatellite instability-high colorectal cancers using a long-read sequencer. The data were further analyzed in combination with whole-exome sequencing, transcriptome sequencing, DNA methylation array, and immunohistochemistry data. RESULTS: We detected 101 truncating mutations in 57 tumors (50%) and loss of 61 alleles in 21 tumors (18%). Based on the integrated analysis that enabled the immunologic subclassification of microsatellite instability-high colorectal cancers, we identified a subtype of tumors in which lymphocyte infiltration was reduced, partly due to reduced expression of HLA-ABC genes in the absence of apparent genetic alterations. Survival time of patients with such tumors was shorter than in patients with other tumor types. Paradoxically, tumor mutation burden was highest in the subtype, suggesting that the immunogenic effect of accumulating mutations was counterbalanced by mutations that weakened immunoreactivity. Various genetic and epigenetic alterations, including frameshift mutations in RFX5 and promoter methylation of PSMB8 and HLA-A, converged on reduced expression of HLA-ABC genes. CONCLUSIONS: Our detailed immunogenomic analysis provides information that will facilitate the improvement and development of cancer immunotherapy.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Genes MHC Classe I/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microglobulina beta-2/genética , Alelos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA , Epigênese Genética , Expressão Gênica , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Humanos , Imunogenética , Linfócitos do Interstício Tumoral , Instabilidade de Microssatélites , Complexo de Endopeptidases do Proteassoma/genética , Fatores de Transcrição de Fator Regulador X/genética , Taxa de Sobrevida , Microglobulina beta-2/metabolismo
13.
Blood ; 137(1): 75-88, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730594

RESUMO

The pseudokinase Trib1 functions as a myeloid oncogene that recruits the E3 ubiquitin ligase COP1 to C/EBPα and interacts with MEK1 to enhance extracellular signal-regulated kinase (ERK) phosphorylation. A close genetic effect of Trib1 on Hoxa9 has been observed in myeloid leukemogenesis, where Trib1 overexpression significantly accelerates Hoxa9-induced leukemia onset. However, the mechanism underlying how Trib1 functionally modulates Hoxa9 transcription activity is unclear. Herein, we provide evidence that Trib1 modulates Hoxa9-associated super-enhancers. Chromatin immunoprecipitation sequencing analysis identified increased histone H3K27Ac signals at super-enhancers of the Erg, Spns2, Rgl1, and Pik3cd loci, as well as increased messenger RNA expression of these genes. Modification of super-enhancer activity was mostly achieved via the degradation of C/EBPα p42 by Trib1, with a slight contribution from the MEK/ERK pathway. Silencing of Erg abrogated the growth advantage acquired by Trib1 overexpression, indicating that Erg is a critical downstream target of the Trib1/Hoxa9 axis. Moreover, treatment of acute myeloid leukemia (AML) cells with the BRD4 inhibitor JQ1 showed growth inhibition in a Trib1/Erg-dependent manner both in vitro and in vivo. Upregulation of ERG by TRIB1 was also observed in human AML cell lines, suggesting that Trib1 is a potential therapeutic target of Hoxa9-associated AML. Taken together, our study demonstrates a novel mechanism by which Trib1 modulates chromatin and Hoxa9-driven transcription in myeloid leukemogenesis.


Assuntos
Regulação Leucêmica da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Progressão da Doença , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica
14.
Mol Cell ; 60(4): 584-96, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26590716

RESUMO

Bivalent H3K4me3 and H3K27me3 chromatin domains in embryonic stem cells keep active developmental regulatory genes expressed at very low levels and poised for activation. Here, we show an alternative and previously unknown bivalent modified histone signature in lineage-committed mesenchymal stem cells and preadipocytes that pairs H3K4me3 with H3K9me3 to maintain adipogenic master regulatory genes (Cebpa and Pparg) expressed at low levels yet poised for activation when differentiation is required. We show lineage-specific gene-body DNA methylation recruits H3K9 methyltransferase SETDB1, which methylates H3K9 immediately downstream of transcription start sites marked with H3K4me3 to establish the bivalent domain. At the Cebpa locus, this prevents transcription factor C/EBPß binding, histone acetylation, and further H3K4me3 deposition and is associated with pausing of RNA polymerase II, which limits Cebpa gene expression and adipogenesis.


Assuntos
Adipócitos/citologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA , Histonas/genética , PPAR gama/metabolismo , Células 3T3 , Adipócitos/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Cromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Estrutura Terciária de Proteína
15.
PLoS Genet ; 16(9): e1009044, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32991581

RESUMO

The transcription factor nuclear factor I-A (NFIA) is a regulator of brown adipocyte differentiation. Here we show that the C-terminal 17 amino acid residues of NFIA (which we call pro#3 domain) are required for the transcriptional activity of NFIA. Full-length NFIA-but not deletion mutant lacking pro#3 domain-rescued impaired expression of PPARγ, the master transcriptional regulator of adipogenesis and impaired adipocyte differentiation in NFIA-knockout cells. Mechanistically, the ability of NFIA to penetrate chromatin and bind to the crucial Pparg enhancer is mediated through pro#3 domain. However, the deletion mutant still binds to Myod1 enhancer to repress expression of MyoD, the master transcriptional regulator of myogenesis as well as proximally transcribed non-coding RNA called DRReRNA, via competition with KLF5 in terms of enhancer binding, leading to suppression of myogenic gene program. Therefore, the negative effect of NFIA on the myogenic gene program is, at least partly, independent of the positive effect on PPARγ expression and its downstream adipogenic gene program. These results uncover multiple ways of action of NFIA to ensure optimal regulation of brown and beige adipocyte differentiation.


Assuntos
Adipócitos Bege/citologia , Adipócitos Marrons/citologia , Adipogenia/fisiologia , Desenvolvimento Muscular/fisiologia , Fatores de Transcrição NFI/metabolismo , Adipócitos Bege/fisiologia , Adipócitos Marrons/fisiologia , Adipogenia/genética , Animais , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Miogenina/genética , Fatores de Transcrição NFI/genética , PPAR gama/genética , PPAR gama/metabolismo , Prolina , Domínios Proteicos
16.
J Biol Chem ; 296: 100697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895138

RESUMO

Down syndrome critical region (DSCR)-1 functions as a feedback modulator for calcineurin-nuclear factor for activated T cell (NFAT) signals, which are crucial for cell proliferation and inflammation. Stable expression of DSCR-1 inhibits pathological angiogenesis and septic inflammation. DSCR-1 also plays a critical role in vascular wall remodeling associated with aneurysm development that occurs primarily in smooth muscle cells. Besides, Dscr-1 deficiency promotes the M1-to M2-like phenotypic switch in macrophages, which correlates to the reduction of denatured cholesterol uptakes. However, the distinct roles of DSCR-1 in cholesterol and lipid metabolism are not well understood. Here, we show that loss of apolipoprotein (Apo) E in mice with chronic hypercholesterolemia induced Dscr-1 expression in the liver and aortic atheroma. In Dscr-1-null mice fed a high-fat diet, oxidative- and endoplasmic reticulum (ER) stress was induced, and sterol regulatory element-binding protein (SREBP) 2 production in hepatocytes was stimulated. This exaggerated ApoE-/--mediated nonalcoholic fatty liver disease (NAFLD) and subsequent hypercholesterolemia. Genome-wide screening revealed that loss of both ApoE and Dscr-1 resulted in the induction of immune- and leukocyte activation-related genes in the liver compared with ApoE deficiency alone. However, expressions of inflammation-activated markers and levels of monocyte adhesion were suspended upon induction of the Dscr-1 null background in the aortic endothelium. Collectively, our study shows that the combined loss of Dscr-1 and ApoE causes metabolic dysfunction in the liver but reduces atherosclerotic plaques, thereby leading to a dramatic increase in serum cholesterol and the formation of sporadic vasculopathy.


Assuntos
Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proteínas de Ligação ao Cálcio/deficiência , Colesterol/metabolismo , Deleção de Genes , Hipercolesterolemia/genética , Proteínas Musculares/deficiência , Animais , Proteínas de Ligação ao Cálcio/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hipercolesterolemia/metabolismo , Camundongos , Proteínas Musculares/genética , Fenótipo
17.
Cancer Sci ; 113(10): 3282-3290, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35906844

RESUMO

Advances in cancer genome care over the past few years have included the development of gene panel testing for various biomarkers. This article summarizes issues and provides recommendations related to analytical performance evaluations for new oncology gene panels. The scope of these recommendations includes comprehensive genomic profiling assays related to gene panel testing that uses histological or serum specimens to detect gene mutations. As a research project of the Japan Agency for Medical Research and Development Research on Regulatory Science of Pharmaceuticals and Medical Devices, we convened the working group committee that consisted of more than 30 experts from academia, industry, and government. We have discussed the points that should be considered to allow maximal simplification of assessments using clinical specimens in evaluating accuracy and limit of detection in equivalence and analytical performance for 3 years. We provide recommendations specific to each type of gene mutation as well as to reference standards or specimens used for evaluations. In addition, in order to facilitate the discussion on the analytical performance of gene panel tests by multidisciplinary tumor boards of hospitals, the present recommendations also describe the items that companies are expected to provide information on in their packaging inserts and reports, and the items that are expected to be discussed by multidisciplinary tumor boards. Our working group document will be important for participants in multidisciplinary tumor boards, including medical oncologists and genome scientists, and developers of gene panels not only in Japan but also in other countries.


Assuntos
Neoplasias , Humanos , Japão , Mutação , Neoplasias/genética , Neoplasias/patologia , Preparações Farmacêuticas
18.
Genes Cells ; 26(7): 513-529, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33971063

RESUMO

The lysine methyltransferase SETDB1, an enzyme responsible for methylation of histone H3 at lysine 9, plays a key role in H3K9 tri-methylation-dependent silencing of endogenous retroviruses and developmental genes. Recent studies have shown that ubiquitination of human SETDB1 complements its catalytic activity and the silencing of endogenous retroviruses in human embryonic stem cells. However, it is not known whether SETDB1 ubiquitination is essential for its other major role in epigenetic silencing of developmental gene programs. We previously showed that SETDB1 contributes to the formation of H3K4/H3K9me3 bivalent chromatin domains that keep adipogenic Cebpa and Pparg genes in a poised state for activation and restricts the differentiation potential of pre-adipocytes. Here, we show that ubiquitin-resistant K885A mutant of SETDB1 represses adipogenic genes and inhibits pre-adipocyte differentiation similar to wild-type SETDB1. We show this was due to a compensation mechanism for H3K9me3 chromatin modifications on the Cebpa locus by other H3K9 methyltransferases Suv39H1 and Suv39H2. In contrast, the K885A mutant did not repress other SETDB1 target genes such as Tril and Gas6 suggesting SETDB1 represses its target genes by two mechanisms; one that requires its ubiquitination and another that still requires SETDB1 but not its enzyme activity.


Assuntos
Adipogenia , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Ubiquitinação , Células 3T3-L1 , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células HEK293 , Código das Histonas , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação de Sentido Incorreto
19.
Jpn J Clin Oncol ; 52(8): 925-929, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35482395

RESUMO

BACKGROUND: Tumors with a high number of mutations in the genome, or tumor mutational burden, are presumed to be more likely to respond to immune checkpoint inhibitors. However, the optimal method to calculate tumor mutational burden using comprehensive genomic profiling assays is unknown. METHODS: Todai OncoPanel is a dual panel of a deoxyribonucleic acid panel and a ribonucleic acid panel. Todai OncoPanel deoxyribonucleic acid panel version 6 is an improvement over version 3 with increased number of targeted genes and limited targeting of intronic regions. We calculated tumor mutational burden measured by Todai OncoPanel deoxyribonucleic acid panel versions 3 and 6 using three different calculation methods: all mutations within the targeted region (target tumor mutational burden), all mutations within the coding region (all coding tumor mutational burden) and non-synonymous mutations (non-synonymous coding tumor mutational burden). We then compared them with whole exosome sequencing tumor mutational burden. In addition, 16 lung cancer patients whose samples were analyzed using Todai OncoPanel deoxyribonucleic acid version 3 were treated with anti-PD-1 or PD-L1 antibody monotherapy. RESULTS: When compared with whole exosome sequencing tumor mutational burden as the standard, tumor mutational burden measured by Todai OncoPanel deoxyribonucleic acid version 3 resulted in accuracy of 71% for all three calculation methods. In version 6, accuracy was 96% for target tumor mutational burden and all coding tumor mutational burden and 91% for non-synonymous coding tumor mutational burden. Patients with either partial response or stable disease had higher non-synonymous coding tumor mutational burden (6.7/Mb vs. 1.6/Mb, P = 0.02) and higher PD-L1 expression (40% vs. 3%, P = 0.01) and a trend toward higher target tumor mutational burden (9.2/Mb vs. 2.4/Mb, P = 0.09) compared with patients with progressive disease. CONCLUSIONS: Increase in targeted gene number and limiting intronic regions improved tumor mutational burden measurement by Todai OncoPanel when compared with whole exosome sequencing tumor mutational burden. Target tumor mutational burden may be the method of choice to measure tumor mutational burden.


Assuntos
Antígeno B7-H1 , Neoplasias Pulmonares , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , DNA , Genômica , Humanos , Neoplasias Pulmonares/genética , Mutação , Carga Tumoral
20.
Int Heart J ; 63(2): 338-346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35354754

RESUMO

Dilated cardiomyopathy (DCM) is caused by various gene variants and characterized by systolic dysfunction. Lamin variants have been reported to have a poor prognosis. Medical and device therapies are not sufficient to improve the prognosis of DCM with the lamin variants. Recently, induced pluripotent stem (iPS) cells have been used for research on genetic disorders. However, few studies have evaluated the contractile function of cardiac tissue with lamin variants. The aim of this study was to elucidate the function of cardiac cell sheet tissue derived from patients with lamin variant DCM. iPS cells were generated from a patient with lamin A/C (LMNA) -mutant DCM (LMNA p.R225X mutation). After cardiac differentiation and purification, cardiac cell sheets that were fabricated through cultivation on a temperature-responsive culture dish were transferred to the surface of the fibrin gel, and the contractile force was measured. The contractile force and maximum contraction velocity, but not the maximum relaxation velocity, were significantly decreased in cardiac cell sheet tissue with the lamin variant. A qRT-PCR analysis revealed that mRNA expression of some contractile proteins, cardiac transcription factors, Ca2+-handling genes, and ion channels were downregulated in cardiac tissue with the lamin variant.Human iPS-derived bioengineered cardiac tissue with the LMNA p.R225X mutation has the functional properties of systolic dysfunction and may be a promising tissue model for understanding the underlying mechanisms of DCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Cardiomiopatias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA