Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gen Virol ; 100(10): 1417-1430, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31483243

RESUMO

Feline coronavirus (FCoV) has been identified as the aetiological agent of feline infectious peritonitis (FIP), a highly fatal systemic disease in cats. FCoV open reading frame 3 (ORF3) encodes accessory proteins 3a, 3b and 3 c. The FCoV 3b accessory protein consists of 72 amino acid residues and localizes to nucleoli and mitochondria. The present work focused on peptide domains within FCoV 3b that drive its intracellular trafficking. Transfection of different cell types with FCoV 3b fused to enhanced green fluorescent protein (EGFP) or 3×FLAG confirmed localization of FCoV 3b in the mitochondria and nucleoli. Using serial truncated mutants, we showed that nucleolar accumulation is controlled by a joint nucleolar and nuclear localization signal (NoLS/NLS) in which the identified overlapping pat4 motifs (residues 53-57) play a critical role. Mutational analysis also revealed that mitochondrial translocation is mediated by N-terminal residues 10-35, in which a Tom20 recognition motif (residues 13-17) and two other overlapping hexamers (residues 24-30) associated with mitochondrial targeting were identified. In addition, a second Tom20 recognition motif was identified further downstream (residues 61-65), although the mitochondrial translocation evoked by these residues seemed less efficient as a diffuse cytoplasmic distribution was also observed. Assessing the spatiotemporal distribution of FCoV 3b did not provide convincing evidence of dynamic shuttling behaviour between the nucleoli and the mitochondria.


Assuntos
Coronavirus Felino/metabolismo , Peritonite Infecciosa Felina/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Animais , Gatos , Nucléolo Celular/virologia , Coronavirus Felino/química , Coronavirus Felino/genética , Mitocôndrias/virologia , Sinais de Localização Nuclear , Fases de Leitura Aberta , Domínios Proteicos , Transporte Proteico , Proteínas não Estruturais Virais/genética
2.
J Gen Virol ; 97(10): 2633-2642, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543142

RESUMO

One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.


Assuntos
Moléculas de Adesão Celular/genética , Coronavirus Felino/fisiologia , Células Endoteliais/virologia , Peritonite Infecciosa Felina/virologia , Córtex Renal/virologia , Monócitos/virologia , Animais , Gatos , Adesão Celular , Moléculas de Adesão Celular/imunologia , Células Cultivadas , Coronavirus Felino/genética , Selectina E/genética , Selectina E/imunologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Peritonite Infecciosa Felina/genética , Peritonite Infecciosa Felina/imunologia , Peritonite Infecciosa Felina/fisiopatologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Córtex Renal/citologia , Córtex Renal/imunologia , Monócitos/imunologia , Selectina-P/genética , Selectina-P/imunologia , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
3.
J Gen Virol ; 95(Pt 9): 1911-1918, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24876305

RESUMO

To initiate infections, many coronaviruses use sialic acids, either as receptor determinants or as attachment factors helping the virus find its receptor underneath the heavily glycosylated mucus layer. In the present study, the role of sialic acids in serotype I feline enteric coronavirus (FECV) infections was studied in feline intestinal epithelial cell cultures. Treatment of cells with neuraminidase (NA) enhanced infection efficiency, showing that terminal sialic acid residues on the cell surface were not receptor determinants and even hampered efficient virus-receptor engagement. Knowing that NA treatment of coronaviruses can unmask viral sialic acid binding activity, replication of untreated and NA-treated viruses was compared, showing that NA treatment of the virus enhanced infectivity in untreated cells, but was detrimental in NA-treated cells. By using sialylated compounds as competitive inhibitors, it was demonstrated that sialyllactose (2,6-α-linked over 2,3-α-linked) notably reduced infectivity of NA-treated viruses, whereas bovine submaxillary mucin inhibited both treated and untreated viruses. In desialylated cells, however, viruses were less prone to competitive inhibition with sialylated compounds. In conclusion, this study demonstrated that FECV had a sialic acid binding capacity, which was partially masked by virus-associated sialic acids, and that attachment to sialylated compounds could facilitate enterocyte infections. However, sialic acid binding was not a prerequisite for the initiation of infection and virus-receptor engagement was even more efficient after desialylation of cells, indicating that FECV requires sialidases for efficient enterocyte infections.


Assuntos
Coronavirus Felino/imunologia , Lactose/análogos & derivados , Neuraminidase/farmacologia , Receptores Virais/antagonistas & inibidores , Ácidos Siálicos/metabolismo , Ligação Viral/efeitos dos fármacos , Animais , Doenças do Gato/virologia , Gatos , Linhagem Celular , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Peritonite Infecciosa Felina/virologia , Fetuínas/farmacologia , Mucinas Gástricas/farmacologia , Mucosa Intestinal/virologia , Lactoferrina/farmacologia , Lactose/metabolismo , Lactose/farmacologia , Ácidos Siálicos/farmacologia
4.
Vet Immunol Immunopathol ; 191: 44-50, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28895865

RESUMO

Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell cultures were successfully established and characterized and they supported the proliferation of red bone marrow hematopoietic cells, which finally differentiated into monocytic cells and CD4+ and CD8+ cells.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura/veterinária , Citometria de Fluxo/veterinária , Imunofluorescência/veterinária , Células-Tronco Hematopoéticas/citologia , Células-Tronco Mesenquimais/citologia , Microscopia Confocal/veterinária , Suínos/sangue , Suínos/fisiologia
5.
PLoS One ; 12(10): e0186343, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29036224

RESUMO

Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Monócitos/citologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Adipócitos/citologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Técnicas de Cocultura , Pulmão/citologia , Linfonodos/citologia , Macrófagos/citologia , Células-Tronco Mesenquimais/metabolismo , Mucosa Nasal/citologia , Baço/citologia , Suínos
6.
Virus Res ; 227: 249-260, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27836726

RESUMO

Env and Gag are key components of the FIV virion that are targeted to the plasma membrane for virion assembly. They are both important stimulators and targets of anti-FIV immunity. To investigate and compare the expression pattern and antigenic changes of Gag and Env in various research models, infected PBMC (the natural FIV host cells) and GFox, and transfected CrFK were stained over time with various Env and Gag specific MAbs. In FIV infected GFox and PBMC, Env showed changes in epitope availability for antibody binding during processing and trafficking, which was not seen in transfected CrFK. Interestingly, epitopes exposed on intracellular Env and Env present on the plasma membrane of CrFK and GFox seem to be hidden on plasma membrane expressed Env of FIV infected PBMC. A kinetic follow up of Gag and Env expression showed a polarization of both Gag and Env expression to specific sites at the plasma membrane of PBMC, but not in other cell lines. In conclusion, mature trimeric cell surface expressed Env might be antigenically distinct from intracellular monomeric Env in PBMC and might possibly be unrecognizable by feline humoral immunity. In addition, Env expression is restricted to a small area on the plasma membrane and co-localizes with a large moiety of Gag, which may represent a preferred FIV budding site, or initiation of virological synapses with direct cell-to-cell virus transmission.


Assuntos
Epitopos/imunologia , Produtos do Gene env/genética , Produtos do Gene gag/genética , Vírus da Imunodeficiência Felina/fisiologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/imunologia , Gatos , Linhagem Celular , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Epitopos/química , Síndrome de Imunodeficiência Adquirida Felina/imunologia , Síndrome de Imunodeficiência Adquirida Felina/virologia , Expressão Gênica , Produtos do Gene env/química , Produtos do Gene env/imunologia , Produtos do Gene env/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/imunologia , Produtos do Gene gag/metabolismo , Glicosilação , Leucócitos Mononucleares/imunologia , Ligação Proteica/imunologia , Domínios e Motivos de Interação entre Proteínas/imunologia , Multimerização Proteica
7.
Sci Rep ; 6: 20022, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822958

RESUMO

Feline infectious peritonitis (FIP) results from mutations in the viral genome during a common feline enteric coronavirus (FECV) infection. Since many virological and immunological data on FECV infections are lacking, the present study investigated these missing links during experimental infection of three SPF cats with FECV strain UCD. Two cats showed mild clinical signs, faecal shedding of infectious virus from 4 dpi, a cell-associated viraemia at inconsistent time points from 5 dpi, a highly neutralising antibody response from 9 dpi, and no major abnormalities in leukocyte numbers. Faecal shedding lasted for 28-56 days, but virus shed during this stage was less infectious in enterocyte cultures and affected by mutations. Remarkably, in the other cat neither clinical signs nor acute shedding were seen, but virus was detected in blood cells from 3 dpi, and shedding of non-enterotropic, mutated viruses suddenly occurred from 14 dpi onwards. Neutralising antibodies arose from 21 dpi. Leukocyte numbers were not different compared to the other cats, except for the CD8(+) regulatory T cells. These data indicate that FECV can infect immune cells even in the absence of intestinal replication and raise the hypothesis that the gradual adaptation to these cells can allow non-enterotropic mutants to arise.


Assuntos
Coronavirus Felino/fisiologia , Enterócitos/virologia , Peritonite Infecciosa Felina/virologia , Mutação , Eliminação de Partículas Virais , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Gatos , Células Cultivadas , Evolução Molecular , Fezes/virologia , Peritonite Infecciosa Felina/imunologia , Genoma Viral , Contagem de Leucócitos , Viremia
8.
Genome Announc ; 3(3)2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25999551

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a member of the family Coronaviridae and can cause severe outbreaks of diarrhea in piglets from different age groups. Here, we report the complete genome sequence (28,028 nt) of a PEDV strain isolated during a novel outbreak in Belgium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA