Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747432

RESUMO

A simple phenomenological thermodynamic model is developed to describe the chemical bonding and unbonding in homonuclear diatomic systems. This model describes the entire phase diagram of dimer-forming systems and shows a transition from monomers to dimers, with monomers favored at both very low and very high pressures, as well as at high temperatures. In the context of hydrogen, the former region corresponds to hydrogen present in most interstellar gas clouds, while the latter is associated with the long sought-after fluid metallic phase. The model predicts a molecular to atomic fluid transition in dense deuterium, which is in agreement with recently reported experimental measurements.

2.
Proc Natl Acad Sci U S A ; 117(24): 13374-13378, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482874

RESUMO

Molecular hydrogen forms the archetypical quantum solid. Its quantum nature is revealed by behavior which is classically impossible and by very strong isotope effects. Isotope effects between [Formula: see text], [Formula: see text], and HD molecules come from mass difference and the different quantum exchange effects: fermionic [Formula: see text] molecules have antisymmetric wavefunctions, while bosonic [Formula: see text] molecules have symmetric wavefunctions, and HD molecules have no exchange symmetry. To investigate how the phase diagram depends on quantum-nuclear effects, we use high-pressure and low-temperature in situ Raman spectroscopy to map out the phase diagrams of [Formula: see text]-HD-[Formula: see text] with various isotope concentrations over a wide pressure-temperature (P-T) range. We find that mixtures of [Formula: see text], HD, and [Formula: see text] behave as an isotopic molecular alloy (ideal solution) and exhibit symmetry-breaking phase transitions between phases I and II and phase III. Surprisingly, all transitions occur at higher pressures for the alloys than either pure [Formula: see text] or [Formula: see text] This runs counter to any quantum effects based on isotope mass but can be explained by quantum trapping of high-kinetic energy states by the exchange interaction.

3.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210301, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35965470

RESUMO

We present a method for rapid calculation of coronavirus growth rates and [Formula: see text]-numbers tailored to publicly available UK data. We assume that the case data comprise a smooth, underlying trend which is differentiable, plus systematic errors and a non-differentiable noise term, and use bespoke data processing to remove systematic errors and noise. The approach is designed to prioritize up-to-date estimates. Our method is validated against published consensus [Formula: see text]-numbers from the UK government and is shown to produce comparable results two weeks earlier. The case-driven approach is combined with weight-shift-scale methods to monitor trends in the epidemic and for medium-term predictions. Using case-fatality ratios, we create a narrative for trends in the UK epidemic: increased infectiousness of the B1.117 (Alpha) variant, and the effectiveness of vaccination in reducing severity of infection. For longer-term future scenarios, we base future [Formula: see text] on insight from localized spread models, which show [Formula: see text] going asymptotically to 1 after a transient, regardless of how large the [Formula: see text] transient is. This accords with short-lived peaks observed in case data. These cannot be explained by a well-mixed model and are suggestive of spread on a localized network. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Assuntos
Coronavirus , Epidemias , Epidemias/prevenção & controle , Reprodução , Reino Unido/epidemiologia
4.
J Chem Phys ; 156(5): 054502, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135259

RESUMO

It has recently been discovered that, when subjected to moderate amounts of pressure, methane dissolves in water to form binary mixtures of up to 40% molar methane. No significant solubility of water in methane is known. In these mixtures, the water hydrogen-bond network is largely complete and surrounds the methane molecules. The discovery of this dense mixture has once again highlighted the technical difficulties involved in accurately describing and sampling mixing phenomena both computationally and experimentally. Here, we present a systematic and critical study of the methods employed to characterize binary mixtures and their robustness. This study highlights the requirements needed to develop a quantitative understanding, and it proposes new and more accessible measures of miscibility to investigators, particularly for in silico analysis.

5.
Proc Natl Acad Sci U S A ; 116(21): 10297-10302, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30975752

RESUMO

Various single elements form incommensurate crystal structures under pressure, where a zeolite-type "host" sublattice surrounds a "guest" sublattice comprising 1D chains of atoms. On "chain melting," diffraction peaks from the guest sublattice vanish, while those from the host remain. Diffusion of the guest atoms is expected to be confined to the channels in the host sublattice, which suggests 1D melting. Here, we present atomistic simulations of potassium to investigate this phenomenon and demonstrate that the chain-melted phase has no long-ranged order either along or between the chains. This 3D disorder provides the extensive entropy necessary to make the chain melt a true thermodynamic phase of matter, yet with the unique property that diffusion remains confined to 1D only. Calculations necessitated the development of an interatomic forcefield using machine learning, which we show fully reproduces potassium's phase diagram, including the chain-melted state and 14 known phase transitions.

6.
Phys Rev Lett ; 126(22): 225701, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152180

RESUMO

Quantum effects in condensed matter normally only occur at low temperatures. Here we show a large quantum effect in high-pressure liquid hydrogen at thousands of Kelvins. We show that the metallization transition in hydrogen is subject to a very large isotope effect, occurring hundreds of degrees lower than the equivalent transition in deuterium. We examined this using path integral molecular dynamics simulations which identify a liquid-liquid transition involving atomization, metallization, and changes in viscosity, specific heat, and compressibility. The difference between H_{2} and D_{2} is a quantum mechanical effect that can be associated with the larger zero-point energy in H_{2} weakening the covalent bond. Our results mean that experimental results on deuterium must be corrected before they are relevant to understanding hydrogen at planetary conditions.

7.
Phys Rev Lett ; 118(14): 145701, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430483

RESUMO

We show that the isotope effect leads to a completely different spectroscopic signal in hydrogen-deuterium mixtures, compared to pure elements that have the same crystal structure. This is particularly true for molecular vibrations, which are the main source of information about the structure of high-pressure hydrogen. Mass disorder breaks translational symmetry, meaning that vibrations are localized almost to single molecules, and are not zone-center phonons. In mixtures, each observable infrared (IR) peak corresponds to a collection of many such molecular vibrations, which have a distribution of frequencies depending on local environment. Furthermore discrete groups of environments cause the peaks to split. We illustrate this issue by considering the IR spectrum of the high-pressure phase III structure of hydrogen, recently interpreted as showing novel phases in isotopic mixtures. We calculate the IR spectrum of hydrogen-deuterium mixtures in the C2/c and Cmca-12 structures, showing that isotopic disorder gives rise to mode localization of the high-frequency vibrons. The local coordination of the molecules leads to discrete IR peaks. The spread of frequencies is strongly enhanced with pressure, such that more peaks become resolvable at higher pressures, in agreement with the recent measurements.

8.
Phys Rev Lett ; 119(20): 205701, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29219377

RESUMO

It is shown that the enthalpy of any close packed structure for a given element can be characterized as a linear expansion in a set of continuous variables α_{n}, which describe the stacking configuration. This enables us to represent the infinite, discrete set of stacking sequences within a finite, continuous space of the expansion parameters H_{n}. These H_{n} determine the stable structure and vary continuously in the thermodynamic space of pressure, temperature, or composition. The continuity of both spaces means that only transformations between stable structures adjacent in the H_{n} space are possible, giving the model predictive as well as descriptive ability. We calculate the H_{n} using density functional theory (DFT)and interatomic potentials for a range of materials. Some striking results are found: e.g., the Lennard-Jones potential model has 11 possible stable structures and over 50 phase transitions as a function of cutoff range. The very different phase diagrams of Sc, Tl, Y, and the lanthanides are understood within a single theory. We find that the widely reported 9R-fcc transition is not allowed in equilibrium thermodynamics, and in cases where it has been reported in experiments (Li, Na), we show that DFT theory is also unable to predict it.

9.
Phys Chem Chem Phys ; 19(32): 21829-21839, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28783189

RESUMO

We investigate the van der Waals interactions in solid molecular hydrogen structures. We calculate enthalpy and the Gibbs free energy to obtain zero and finite temperature phase diagrams, respectively. We employ density functional theory (DFT) to calculate the electronic structure and density functional perturbation theory (DFPT) with van der Waals (vdW) functionals to obtain phonon spectra. We focus on the solid molecular C2/c, Cmca-12, P63/m, Cmca, and Pbcn structures within the pressure range of 200 < P < 450 GPa. We propose two structures of the C2/c and Pbcn for phase III which are stabilized within different pressure range above 200 GPa. We find that vdW functionals have a big effect on vibrations and finite-temperature phase stability, however, different vdW functionals have different effects. We conclude that, in addition to the vdW interaction, a correct treatment of the high charge gradient limit is essential. We show that the dependence of molecular bond-lengths on exchange-correlation also has a considerable influence on the calculated metallization pressure, introducing errors of up to 100 GPa.

10.
Phys Rev Lett ; 114(16): 165501, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955055

RESUMO

We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

12.
Phys Rev Lett ; 113(17): 175501, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25379921

RESUMO

Using a combination of the Raman spectroscopy and density functional theory calculations on dense hydrogen-deuterium mixtures of various concentrations, we demonstrate that, at 300 K and above 200 GPa, they transform into phase IV, forming a disordered binary alloy with six highly localized intramolecular vibrational (vibrons) and four delocalized low-frequency (<1200 cm(-1)) modes. Hydrogen-deuterium mixtures are unique in showing a purely mass-induced localization effect in the quantum solid: chemical bonding is isotope-independent while the mass varies by a factor of 2.

13.
J Phys Chem C Nanomater Interfaces ; 127(31): 15523-15532, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583438

RESUMO

We show that the hydrogen in metal superhydride compounds can adopt two distinct states-atomic and molecular. At low pressures, the maximum number of atomic hydrogens is typically equal to the valency of the cation; additional hydrogens pair to form molecules with electronic states far below the Fermi energy causing low-symmetry structures with large unit cells. At high pressures, molecules become unstable, and all hydrogens become atomic. This study uses density functional theory, adopting BaH4 as a reference compound, which is compared with other stoichiometries and other cations. Increased temperature and zero-point motion also favor high-symmetry atomic states, and picosecond-timescale breaking and remaking of the bond permutations via intermediate H3- units.

14.
ACS Omega ; 8(13): 12144-12153, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033816

RESUMO

The Frenkel line has been proposed as a crossover in the fluid region of phase diagrams between a "nonrigid" and a "rigid" fluid. It is generally described as a crossover in the dynamical properties of a material and as such has been described theoretically using a very different set of markers from those with which is it investigated experimentally. In this study, we have performed extensive calculations using two simple yet fundamentally different model systems: hard spheres and square-well potentials. The former has only hardcore repulsion, while the latter also includes a simple model of attraction. We computed and analyzed a series of physical properties used previously in simulations and experimental measurements and discuss critically their correlations and validity as to being able to uniquely and coherently locate the Frenkel line in discontinuous potentials.

15.
J Phys Chem Lett ; 13(35): 8284-8289, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36036981

RESUMO

We have performed a series of neutron scattering experiments on supercritical krypton. Our data and analysis allow us to characterize the Frenkel line crossover in this model monatomic fluid. The data from our measurements was analyzed using Empirical Potential Structure Refinement to determine the short- and medium-range structure of the fluids. We find evidence for several shells of neighbors which form approximately concentric rings of density about each atom. The ratio of second to first shell radius is significantly larger than in any crystal structure. Modeling krypton using a Lennard-Jones potential is shown to give significant errors, notably that the liquid is overstructured. The true potential appears to be longer ranged and with a softer core than the 6-12 powerlaws permit.

16.
J Phys Chem Lett ; 13(36): 8447-8454, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053162

RESUMO

Through a series of high pressure diamond anvil experiments, we report the synthesis of alkaline earth (Ca, Sr, Ba) tetrahydrides, and investigate their properties through Raman spectroscopy, X-ray diffraction, and density functional theory calculations. The tetrahydrides incorporate both atomic and quasi-molecular hydrogen, and we find that the frequency of the intramolecular stretching mode of the H2δ- units downshifts from Ca to Sr and to Ba upon compression. The experimental results indicate that the larger the host cation, the longer the H2δ- bond. Analysis of the electron localization function (ELF) demonstrates that the lengthening of the H-H bond is caused by the charge transfer from the metal to H2δ- and by the steric effect of the metal host on the H-H bond. This effect is most prominent for BaH4, where the precompression of H2δ- units at 50 GPa results in bond lengths comparable to that of pure H2 above 275 GPa.

17.
J Phys Condens Matter ; 33(34)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102627

RESUMO

We present Monte Carlo studies and analysis of the frustrated antiferromagnetic Potts model of a triangular lattice. This Potts model shows a remarkably rich range of structures, and striking similarities to the high pressure phases of hydrogen which are typified by hexagonal close packed layered structures [1]. There are four known H2molecular phases, all of which are isostructural to within the resolution of x-ray diffraction. Experimentally, the phase lines have been mapped by spectroscopy, which cannot reveal the structure. Study by density functional theory (DFT) has suggested a large number of candidate structures, based on the hexagonal-close packing of H2molecules. The Potts model exhibits structures similar to DFT candidate hydrogen phases I, II and III: the range of different Potts model structures suggests that the hydrogen system in the 'phase II' region, may exhibit more than a single phase. It also suggests reorientational excitations which may be detectable in spectroscopy.

18.
J Phys Chem Lett ; 12(47): 11609-11615, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34812632

RESUMO

Recent studies on supercritical nitrogen revealed clear changes in structural markers and dynamical properties when the coordination number approaches its maximum value. The line in P and T space where these changes occur is referred to as the Frenkel line. Here, we qualitatively reproduce such changes in the supercritical regime using the popular "optimized potential for liquid simulation" (OPLS) classical force field for molecular dynamics. Unfortunately, at 160 K, OPLS nitrogen predicts sublimation rather than producing a liquid phase; therefore, we developed our own force field to achieve quantitative agreement with experimental data. We confirm the asymptotic behavior of the coordination number on crossing the Frenkel line and note an associated change in the diffusion constant, consistent with the non-rigid to rigid liquid-like character of the "transition". The simulations allow us to track the Frenkel line to subcritical temperatures and demonstrate that it terminates at the triple point. This establishes the experimentally measurable changes, which could unequivocally determine the Frenkel line in other systems.

19.
J Phys Chem Lett ; : 5738-5743, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132557

RESUMO

The chalcogens are known to react with one another to form interchalcogens, which exhibit a diverse range of bonding and conductive behavior due to the difference in electronegativity between the group members. Through a series of high-pressure diamond anvil experiments combined with density functional theory calculations, we report the synthesis of an S-Se hydride. At pressures above 4 GPa we observe the formation of a single solid composed of both H2Se and H2S molecular units. Further compression in a hydrogen medium leads to the formation of an alloyed compound (H2SxSe1-x)2H2, after which there is a sequence of pressure-induced phase transitions associated with the arrested rotation of molecules. At pressures above 50 GPa, there is a symmetrization of hydrogen bonds concomitantly with a closing band gap and increased reflectivity of the compound, indicative of a transition to a metallic state.

20.
J Phys Chem Lett ; 12(20): 4910-4916, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34008402

RESUMO

By combining pressures up to 50 GPa and temperatures of 1200 K, we synthesize the novel barium hydride, Ba8H46, stable down to 27 GPa. We use Raman spectroscopy, X-ray diffraction, and first-principles calculations to determine that this compound adopts a highly symmetric Pm3¯n structure with an unusual 534:1 hydrogen-to-barium ratio. This singular stoichiometry corresponds to the well-defined type-I clathrate geometry. This clathrate consists of a Weaire-Phelan hydrogen structure with the barium atoms forming a topologically close-packed phase. In particular, the structure is formed by H20 and H24 clathrate cages showing substantially weakened H-H interactions. Density functional theory (DFT) demonstrates that cubic Pm3¯n Ba8H46 requires dynamical effects to stabilize the H20 and H24 clathrate cages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA