Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565148

RESUMO

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Exoma , Doenças Raras , Humanos , Variações do Número de Cópias de DNA/genética , Doenças Raras/genética , Doenças Raras/diagnóstico , Exoma/genética , Masculino , Feminino , Estudos de Coortes , Testes Genéticos/métodos
2.
Am J Hum Genet ; 110(7): 1034-1045, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279760

RESUMO

Newborn genomic sequencing (NBSeq) to screen for medically important genetic information is of considerable interest but data characterizing the actionability of such findings, and the downstream medical efforts in response to discovery of unanticipated genetic risk variants, are lacking. From a clinical trial of comprehensive exome sequencing in 127 apparently healthy infants and 32 infants in intensive care, we previously identified 17 infants (10.7%) with unanticipated monogenic disease risks (uMDRs). In this analysis, we assessed actionability for each of these uMDRs with a modified ClinGen actionability semiquantitative metric (CASQM) and created radar plots representing degrees of penetrance of the condition, severity of the condition, effectiveness of intervention, and tolerability of intervention. In addition, we followed each of these infants for 3-5 years after disclosure and tracked the medical actions prompted by these findings. All 17 uMDR findings were scored as moderately or highly actionable on the CASQM (mean 9, range: 7-11 on a 0-12 scale) and several distinctive visual patterns emerged on the radar plots. In three infants, uMDRs revealed unsuspected genetic etiologies for existing phenotypes, and in the remaining 14 infants, uMDRs provided risk stratification for future medical surveillance. In 13 infants, uMDRs prompted screening for at-risk family members, three of whom underwent cancer-risk-reducing surgeries. Although assessments of clinical utility and cost-effectiveness will require larger datasets, these findings suggest that large-scale comprehensive sequencing of newborns will reveal numerous actionable uMDRs and precipitate substantial, and in some cases lifesaving, downstream medical care in newborns and their family members.


Assuntos
Testes Genéticos , Genoma Humano , Humanos , Recém-Nascido , Triagem Neonatal , Genômica , Sequenciamento do Exoma
3.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37451268

RESUMO

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Assuntos
Deficiência Intelectual , Fosfatidilinositóis , Animais , Síndrome , Actinas , Peixe-Zebra/genética , Deficiência Intelectual/genética , Monoéster Fosfórico Hidrolases/genética , Fosfatos de Fosfatidilinositol
4.
Am J Hum Genet ; 110(1): 120-145, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528028

RESUMO

Eukaryotic initiation factor-4A2 (EIF4A2) is an ATP-dependent RNA helicase and a member of the DEAD-box protein family that recognizes the 5' cap structure of mRNAs, allows mRNA to bind to the ribosome, and plays an important role in microRNA-regulated gene repression. Here, we report on 15 individuals from 14 families presenting with global developmental delay, intellectual disability, hypotonia, epilepsy, and structural brain anomalies, all of whom have extremely rare de novo mono-allelic or inherited bi-allelic variants in EIF4A2. Neurodegeneration was predominantly reported in individuals with bi-allelic variants. Molecular modeling predicts these variants would perturb structural interactions in key protein domains. To determine the pathogenicity of the EIF4A2 variants in vivo, we examined the mono-allelic variants in Drosophila melanogaster (fruit fly) and identified variant-specific behavioral and developmental defects. The fruit fly homolog of EIF4A2 is eIF4A, a negative regulator of decapentaplegic (dpp) signaling that regulates embryo patterning, eye and wing morphogenesis, and stem cell identity determination. Our loss-of-function (LOF) rescue assay demonstrated a pupal lethality phenotype induced by loss of eIF4A, which was fully rescued with human EIF4A2 wild-type (WT) cDNA expression. In comparison, the EIF4A2 variant cDNAs failed or incompletely rescued the lethality. Overall, our findings reveal that EIF4A2 variants cause a genetic neurodevelopmental syndrome with both LOF and gain of function as underlying mechanisms.


Assuntos
Proteínas de Drosophila , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Epilepsia/genética , Fator de Iniciação 4A em Eucariotos/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
J Immunol ; 212(5): 904-916, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38276072

RESUMO

A primary concern in vaccine development is safety, particularly avoiding an excessive immune reaction in an otherwise healthy individual. An accurate prediction of vaccine reactogenicity using in vitro assays and computational models would facilitate screening and prioritization of novel candidates early in the vaccine development process. Using the modular in vitro immune construct model of human innate immunity, PBMCs from 40 healthy donors were treated with 10 different vaccines of varying reactogenicity profiles and then cell culture supernatants were analyzed via flow cytometry and a multichemokine/cytokine assay. Differential response profiles of innate activity and cell viability were observed in the system. In parallel, an extensive adverse event (AE) dataset for the vaccines was assembled from clinical trial data. A novel reactogenicity scoring framework accounting for the frequency and severity of local and systemic AEs was applied to the clinical data, and a machine learning approach was employed to predict the incidence of clinical AEs from the in vitro assay data. Biomarker analysis suggested that the relative levels of IL-1B, IL-6, IL-10, and CCL4 have higher predictive importance for AE risk. Predictive models were developed for local reactogenicity, systemic reactogenicity, and specific individual AEs. A forward-validation study was performed with a vaccine not used in model development, Trumenba (meningococcal group B vaccine). The clinically observed Trumenba local and systemic reactogenicity fell on the 26th and 93rd percentiles of the ranges predicted by the respective models. Models predicting specific AEs were less accurate. Our study presents a useful framework for the further development of vaccine reactogenicity predictive models.


Assuntos
Vacinas , Humanos , Imunidade Inata , Incidência , Desenvolvimento de Vacinas
6.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37531237

RESUMO

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína Fosfatase 1/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Glucose , Glicogênio , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicações
7.
Am J Hum Genet ; 108(8): 1450-1465, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34186028

RESUMO

The genetic causes of global developmental delay (GDD) and intellectual disability (ID) are diverse and include variants in numerous ion channels and transporters. Loss-of-function variants in all five endosomal/lysosomal members of the CLC family of Cl- channels and Cl-/H+ exchangers lead to pathology in mice, humans, or both. We have identified nine variants in CLCN3, the gene encoding CIC-3, in 11 individuals with GDD/ID and neurodevelopmental disorders of varying severity. In addition to a homozygous frameshift variant in two siblings, we identified eight different heterozygous de novo missense variants. All have GDD/ID, mood or behavioral disorders, and dysmorphic features; 9/11 have structural brain abnormalities; and 6/11 have seizures. The homozygous variants are predicted to cause loss of ClC-3 function, resulting in severe neurological disease similar to the phenotype observed in Clcn3-/- mice. Their MRIs show possible neurodegeneration with thin corpora callosa and decreased white matter volumes. Individuals with heterozygous variants had a range of neurodevelopmental anomalies including agenesis of the corpus callosum, pons hypoplasia, and increased gyral folding. To characterize the altered function of the exchanger, electrophysiological analyses were performed in Xenopus oocytes and mammalian cells. Two variants, p.Ile607Thr and p.Thr570Ile, had increased currents at negative cytoplasmic voltages and loss of inhibition by luminal acidic pH. In contrast, two other variants showed no significant difference in the current properties. Overall, our work establishes a role for CLCN3 in human neurodevelopment and shows that both homozygous loss of ClC-3 and heterozygous variants can lead to GDD/ID and neuroanatomical abnormalities.


Assuntos
Canais de Cloreto/genética , Modelos Animais de Doenças , Canais Iônicos/fisiologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo
8.
Basic Res Cardiol ; 119(1): 151-168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145999

RESUMO

A deficiency of striated preferentially expressed gene (Speg), a member of the myosin light chain kinase family, results in abnormal myofibril structure and function of immature cardiomyocytes (CMs), corresponding with a dilated cardiomyopathy, heart failure and perinatal death. Mitochondrial development plays a role in cardiomyocyte maturation. Therefore, this study investigated whether Speg deficiency ( - / - ) in CMs would result in mitochondrial abnormalities. Speg wild-type and Speg-/- C57BL/6 littermate mice were utilized for assessment of mitochondrial structure by transmission electron and confocal microscopies. Speg was expressed in the first and second heart fields at embryonic (E) day 7.5, prior to the expression of mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) at E8.5. Decreases in NCLX expression (E11.5) and the mitochondrial-to-nuclear DNA ratio (E13.5) were observed in Speg-/- hearts. Imaging of E18.5 Speg-/- hearts revealed abnormal mitochondrial cristae, corresponding with decreased ATP production in cells fed glucose or palmitate, increased levels of mitochondrial superoxide and depolarization of mitochondrial membrane potential. Interestingly, phosphorylated (p) PGC-1α, a key mediator of mitochondrial development, was significantly reduced in Speg-/- hearts during screening for targeted genes. Besides Z-line expression, Speg partially co-localized with PGC-1α in the sarcomeric region and was found in the same complex by co-immunoprecipitation. Overexpression of a Speg internal serine/threonine kinase domain in Speg-/- CMs promoted translocation of pPGC-1α into the nucleus, and restored ATP production that was abolished by siRNA-mediated silencing of PGC-1α. Our results demonstrate a critical role of Speg in mitochondrial development and energy metabolism in CMs, mediated in part by phosphorylation of PGC-1α.


Assuntos
Cardiomiopatia Dilatada , Doenças Mitocondriais , Camundongos , Animais , Gravidez , Feminino , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , DNA Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo
9.
Genet Med ; : 101177, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38855852

RESUMO

PURPOSE: Critically ill infants from marginalized populations disproportionately receive care in neonatal intensive care units (NICUs) that lack access to state-of-the-art genomic care, leading to inequitable outcomes. We sought provider perspectives to inform our implementation study (VIGOR) providing rapid genomic sequencing within these settings. METHODS: We conducted semi-structured focus groups with neonatal and genetics providers at five NICUs at safety-net hospitals, informed by the Promoting Action on Research Implementation in Health Services framework, which incorporates evidence, context, and facilitation domains. We iteratively developed codes and themes until thematic saturation was reached. RESULTS: Regarding evidence, providers felt that genetic testing benefits infants and families. Regarding context, the major barriers identified to genomic care were genetic testing cost, lack of genetics expertise for disclosure and follow-up, and navigating the complexity of selecting and ordering genetic tests. Providers had negative feelings about the current status quo and inequity in genomic care across NICUs. Regarding facilitation, providers felt that a virtual support model like VIGOR would address major barriers and foster family-centered care and collaboration. CONCLUSION: NICU providers at safety-net hospitals believe that access to state-of-the-art genomic care is critical for optimizing infant outcomes, yet substantial barriers exist that the VIGOR study may address.

10.
Am J Med Genet A ; 194(5): e63509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158391

RESUMO

Advances in bioinformatic tools paired with the ongoing accumulation of genetic knowledge and periodic reanalysis of genomic sequencing data have led to an improvement in genetic diagnostic rates. Candidate gene variants (CGVs) identified during sequencing or on reanalysis but not yet implicated in human disease or associated with a phenotypically distinct condition are often not revisited, leading to missed diagnostic opportunities. Here, we revisited 33 such CGVs from our previously published study and determined that 16 of them are indeed disease-causing (novel or phenotype expansion) since their identification. These results emphasize the need to focus on previously identified CGVs during sequencing or reanalysis and the importance of sharing that information with researchers around the world, including relevant functional analysis to establish disease causality.


Assuntos
Biologia Computacional , Genômica , Humanos , Sequenciamento do Exoma , Fenótipo , Genômica/métodos , Biologia Computacional/métodos , Alelos
11.
PLoS Genet ; 17(7): e1009639, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232960

RESUMO

ARHGAP42 encodes Rho GTPase activating protein 42 that belongs to a member of the GTPase Regulator Associated with Focal Adhesion Kinase (GRAF) family. ARHGAP42 is involved in blood pressure control by regulating vascular tone. Despite these findings, disorders of human variants in the coding part of ARHGAP42 have not been reported. Here, we describe an 8-year-old girl with childhood interstitial lung disease (chILD), systemic hypertension, and immunological findings who carries a homozygous stop-gain variant (c.469G>T, p.(Glu157Ter)) in the ARHGAP42 gene. The family history is notable for both parents with hypertension. Histopathological examination of the proband lung biopsy showed increased mural smooth muscle in small airways and alveolar septa, and concentric medial hypertrophy in pulmonary arteries. ARHGAP42 stop-gain variant in the proband leads to exon 5 skipping, and reduced ARHGAP42 levels, which was associated with enhanced RhoA and Cdc42 expression. This is the first report linking a homozygous stop-gain variant in ARHGAP42 with a chILD disorder, systemic hypertension, and immunological findings in human patient. Evidence of smooth muscle hypertrophy on lung biopsy and an increase in RhoA/ROCK signaling in patient cells suggests the potential mechanistic link between ARHGAP42 deficiency and the development of chILD disorder.


Assuntos
Proteínas Ativadoras de GTPase/genética , Hipertensão/genética , Doenças Pulmonares Intersticiais/genética , Animais , Criança , Feminino , Homozigoto , Humanos , Leucocitose/genética , Leucocitose/imunologia , Doenças Pulmonares Intersticiais/patologia , Linfocitose/genética , Linfocitose/imunologia , Masculino , Camundongos , Linhagem , Sequenciamento do Exoma , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Hum Mol Genet ; 29(24): 3882-3891, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33355670

RESUMO

Striated preferentially expressed gene (SPEG), a member of the myosin light chain kinase family, is localized at the level of triad surrounding myofibrils in skeletal muscles. In humans, SPEG mutations are associated with centronuclear myopathy and cardiomyopathy. Using a striated muscle-specific Speg-knockout (KO) mouse model, we have previously shown that SPEG is critical for triad maintenance and calcium handling. Here, we further examined the molecular function of SPEG and characterized the effects of SPEG deficiency on triad and focal adhesion proteins. We used yeast two-hybrid assay, and identified desmin, an intermediate filament protein, to interact with SPEG and confirmed this interaction by co-immunoprecipitation. Using domain-mapping assay, we defined that Ig-like and fibronectin III domains of SPEG interact with rod domain of desmin. In skeletal muscles, SPEG depletion leads to desmin aggregates in vivo and a shift in desmin equilibrium from soluble to insoluble fraction. We also profiled the expression and localization of triadic proteins in Speg-KO mice using western blot and immunofluorescence. The amount of RyR1 and triadin were markedly reduced, whereas DHPRα1, SERCA1 and triadin were abnormally accumulated in discrete areas of Speg-KO myofibers. In addition, Speg-KO muscles exhibited internalized vinculin and ß1 integrin, both of which are critical components of the focal adhesion complex. Further, ß1 integrin was abnormally accumulated in early endosomes of Speg-KO myofibers. These results demonstrate that SPEG-deficient skeletal muscles exhibit several pathological features similar to those seen in MTM1 deficiency. Defects of shared cellular pathways may underlie these structural and functional abnormalities in both types of diseases.


Assuntos
Moléculas de Adesão Celular/metabolismo , Desmina/metabolismo , Adesões Focais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/fisiologia , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/patologia , Quinase de Cadeia Leve de Miosina/fisiologia , Animais , Cálcio/metabolismo , Moléculas de Adesão Celular/genética , Desmina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/etiologia , Miopatias Congênitas Estruturais/metabolismo
13.
Am J Hum Genet ; 107(6): 1170-1177, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232677

RESUMO

KDM4B is a lysine-specific demethylase with a preferential activity on H3K9 tri/di-methylation (H3K9me3/2)-modified histones. H3K9 tri/di-demethylation is an important epigenetic mechanism responsible for silencing of gene expression in animal development and cancer. However, the role of KDM4B on human development is still poorly characterized. Through international data sharing, we gathered a cohort of nine individuals with mono-allelic de novo or inherited variants in KDM4B. All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria. In mice, lysine demethylase 4B is expressed during brain development with high levels in the hippocampus, a region important for learning and memory. To understand how KDM4B variants can lead to GDD in humans, we assessed the effect of KDM4B disruption on brain anatomy and behavior through an in vivo heterozygous mouse model (Kdm4b+/-), focusing on neuroanatomical changes. In mutant mice, the total brain volume was significantly reduced with decreased size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly. This report demonstrates that variants in KDM4B are associated with GDD/ intellectual disability and neuroanatomical defects. Our findings suggest that KDM4B variation leads to a chromatinopathy, broadening the spectrum of this group of Mendelian disorders caused by alterations in epigenetic machinery.


Assuntos
Deficiências do Desenvolvimento/genética , Variação Genética , Histona Desmetilases com o Domínio Jumonji/genética , Malformações do Sistema Nervoso/genética , Animais , Encéfalo/diagnóstico por imagem , Epigênese Genética , Feminino , Heterozigoto , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Histonas/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Metilação , Camundongos , Processamento de Proteína Pós-Traducional , Convulsões/genética , Transdução de Sinais
14.
Am J Hum Genet ; 106(4): 570-583, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197074

RESUMO

EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.


Assuntos
Deficiências do Desenvolvimento/genética , Variação Genética/genética , Leucoencefalopatias/genética , Malformações do Sistema Nervoso/genética , eIF-2 Quinase/genética , Adolescente , Ataxia/genética , Criança , Pré-Escolar , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Lactente , Masculino , Substância Branca/patologia
15.
J Pediatr ; 258: 113404, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023946

RESUMO

OBJECTIVE: To assess the extent and resolution of pulmonary hypertension (PH), cardiovascular factors, and echocardiographic findings associated with mortality in infants and children with vein of Galen malformation (VOGM). STUDY DESIGN: We performed a retrospective review of 49 consecutive children with VOGM admitted to Boston Children's Hospital from 2007 to 2020. Patient characteristics, echocardiographic data, and hospital course were analyzed for 2 cohorts based on age at presentation to Boston Children's Hospital: group 1 (age ≤60 days) or group 2 (age >60 days). RESULTS: Overall hospital survival was 35 of 49 (71.4%); 13 of 26 (50%) in group 1 and 22 of 23 (96%) in group 2 (P < .001). High-output PH (P = .01), cardiomegaly (P = .011), intubation (P = .019), and dopamine use (P = .01) were significantly more common in group 1 than group 2. Among patients in group 1, congestive heart failure (P = .015), intubation (P < .001), use of inhaled nitric oxide (P = .015) or prostaglandin E1 (P = .030), suprasystemic PH (P = .003), and right-sided dilation were significantly associated with mortality; in contrast, left ventricular volume and function, structural congenital heart disease, and supraventricular tachycardia were not associated. Inhaled nitric oxide achieved no clinical benefit in 9 of 11 treated patients. Resolution of PH was associated with overall survival (P < .001). CONCLUSIONS: VOGM remains associated with substantial mortality among infants presenting at ≤60 days of life owing to factors associated with high output PH. Resolution of PH is an indicator associated with survival and a surrogate end point for benchmarking outcomes.


Assuntos
Hipertensão Pulmonar , Malformações da Veia de Galeno , Humanos , Lactente , Criança , Recém-Nascido , Hipertensão Pulmonar/complicações , Malformações da Veia de Galeno/complicações , Malformações da Veia de Galeno/diagnóstico por imagem , Malformações da Veia de Galeno/terapia , Óxido Nítrico , Veias
16.
Am J Med Genet A ; 191(5): 1222-1226, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36722669

RESUMO

Tethered cord syndrome (TCS) is characterized by leg pain and weakness, bladder and bowel dysfunction, orthopedic malformations such as scoliosis, and motor deficits caused by the fixation of the spinal cord to surrounding tissues. TCS is surgically treatable and often found in conjunction with other syndromic conditions. KBG syndrome is caused by variants in the ANKRD11 gene and is characterized by short stature, developmental delay, macrodontia, and a triangular face. The current study explores the prevalence of TCS in pediatric KBG patients and their associated signs and symptoms. Patients with KBG were surveyed for signs and symptoms associated with TCS and asked if they had been diagnosed with the syndrome. We found a high proportion of patients diagnosed with (11%) or being investigated for TCS (24%), emphasizing the need to further characterize the comorbid syndromes. No signs or symptoms clearly emerged as indicative of TCS in KBG patients, but some the prevalence of some signs and symptoms varied by sex. Male KBG patients with diagnosed TCS were more likely to have coordination issues and global delay/brain fog than their female counterparts. Understanding the presentation of TCS in KBG patients is critical for timely diagnosis and treatment.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Defeitos do Tubo Neural , Anormalidades Dentárias , Humanos , Masculino , Criança , Feminino , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/genética , Fácies , Fenótipo , Proteínas Repressoras/genética , Defeitos do Tubo Neural/complicações , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/epidemiologia , Síndrome
17.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183572

RESUMO

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Criança , Feminino , Humanos , Lactente , Masculino , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteína Fosfatase 2C/genética , Estudos Retrospectivos , Vômito , Pré-Escolar , Adolescente , Adulto Jovem , Pessoa de Meia-Idade
18.
J Med Genet ; 59(12): 1171-1178, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35803701

RESUMO

BACKGROUND: Lowe syndrome (LS) is an X linked disease caused by pathogenic variants in the OCRL gene that impacts approximately 1 in 500 000 children. Classic features include congenital cataract, cognitive/behavioural impairment and renal tubulopathy. METHODS: This study is a retrospective review of clinical features reported by family based survey conducted by Lowe Syndrome Association. Frequency of non-ocular clinical feature(s) of LS and their age of onset was summarised. An LS-specific therapy effectiveness scale was used to assess the response to the administered treatment. Expression of OCRL and relevant neuropeptides was measured in postmortem human brain by qPCR. Gene expression in the mouse brain was determined by reanalysis of publicly available bulk and single cell RNA sequencing. RESULTS: A total of 137 individuals (1 female, 89.1% white, median age 14 years (range 0.8-56)) were included in the study. Short stature (height <3rd percentile) was noted in 81% (n=111) individuals, and 15% (n=20) received growth hormone therapy. Undescended testis was reported in 47% (n=64), and median age of onset of puberty was 15 years. Additional features were dental problems (n=77, 56%), bone fractures (n=63, 46%), hypophosphataemia (n=60, 44%), developmental delay and behavioural issues. OCRL is expressed in human and mouse hypothalami, and in hypothalamic cell clusters expressing Ghrh, Sst, Oxt, Pomc and pituitary cells expressing Gh and Prl. CONCLUSIONS: There is a wide spectrum of the clinical phenotype of LS. Some of the features may be partly driven by the loss of function of OCRL in the hypothalamus and the pituitary.


Assuntos
Catarata , Síndrome Oculocerebrorrenal , Criança , Masculino , Animais , Camundongos , Feminino , Humanos , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fenótipo , Catarata/genética , Encéfalo/metabolismo
19.
Hum Mutat ; 43(4): 461-470, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35094443

RESUMO

PAX5 is a transcription factor associated with abnormal posterior midbrain and cerebellum development in mice. PAX5 is highly loss-of-function intolerant and missense constrained, and has been identified as a candidate gene for autism spectrum disorder (ASD). We describe 16 individuals from 12 families who carry deletions involving PAX5 and surrounding genes, de novo frameshift variants that are likely to trigger nonsense-mediated mRNA decay, a rare stop-gain variant, or missense variants that affect conserved amino acid residues. Four of these individuals were published previously but without detailed clinical descriptions. All these individuals have been diagnosed with one or more neurodevelopmental phenotypes including delayed developmental milestones (DD), intellectual disability (ID), and/or ASD. Seizures were documented in four individuals. No recurrent patterns of brain magnetic resonance imaging (MRI) findings, structural birth defects, or dysmorphic features were observed. Our findings suggest that PAX5 haploinsufficiency causes a neurodevelopmental disorder whose cardinal features include DD, variable ID, and/or ASD.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Transtorno do Espectro Autista/genética , Haploinsuficiência , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fator de Transcrição PAX5 , Fenótipo
20.
Hum Mol Genet ; 29(12): 1996-2003, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32160286

RESUMO

Cofilin-2 is an actin-binding protein that is predominantly expressed in skeletal and cardiac muscles and belongs to the AC group of proteins, which includes cofilin-1 and destrin. In humans, cofilin-2 (CFL2) mutations have been associated with congenital myopathies that include nemaline and myofibrillar myopathy. To understand the pathogenicity of the human CFL2 mutation, p.A35T, that first linked cofilin-2 with the human disease, we created a knock-in mouse model. The Cfl2A35T/A35T (KI) mice were indistinguishable from their wild-type littermates at birth, but they rapidly worsened and died by postnatal day 9. The phenotypic, histopathologic and molecular findings mimicked the constitutive Cfl2-knockout (KO) mice described previously, including sarcomeric disruption and actin accumulations in skeletal muscles and negligible amounts of cofilin-2 protein. In addition, KI mice demonstrated a marked reduction in Cfl2 mRNA levels in various tissues including skeletal muscles. Further investigation revealed evidence of alternative splicing with the presence of two alternate transcripts of smaller size. These alternate transcripts were expressed at very low levels in the wild-type mice and were significantly upregulated in the mutant mice, indicating that pre-translational splicing defects may be a critical component of the disease mechanism associated with the mutation. Evidence of reduced expression of the full-length CFL2 transcript was also observed in the muscle biopsy sample of the patient with p.A35T mutation.


Assuntos
Cofilina 2/genética , Predisposição Genética para Doença , Doenças Musculares/genética , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/patologia , Mutação/genética , Fenótipo , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA