Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422592

RESUMO

In this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC50 1.13 µM. Structure-activity relationship (SAR) analysis revealed that N-substituted derivatives generally enhanced the cytotoxic effect, particularly with aliphatic side chains that facilitated favorable target interactions. We also investigated apoptosis, DNA fragmentation, invasion assay, and anti-migration effects, and discussed their underlying molecular mechanisms for the most active compound 7c. We demonstrated that 7c N-propyl analogue could inhibit MDA-MB-231 TNBC cell proliferation by inducing apoptosis through the regulation of vital proteins, namely c-Src, p53, and Bax. In addition, our results also revealed the potential of these compounds against tumor metastasis by downregulating the invasion and migration modes. Moreover, the in vitro inhibitory effect of active analogs against c-Src kinase was studied and proved that might be the main cause of their antiproliferative effect. Overall, these compelling results point towards the therapeutic potential of these derivatives, particularly those with N-substitution as promising candidates for the treatment of TNBC type of breast cancer.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Proteína Tirosina Quinase CSK/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Quinases da Família src , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Pirazóis/química , Pirazóis/farmacologia
2.
J Enzyme Inhib Med Chem ; 39(1): 2351861, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38847308

RESUMO

In this study, a library of phthalimide Schiff base linked to 1,4-disubstituted-1,2,3-triazoles was designed, synthesised, and characterised by different spectral analyses. All analogues have been introduced for in vitro assay of their antiviral activity against COVID-19 virus using Vero cell as incubator with different concentrations. The data revealed most of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with no or weak cytotoxic effect on Vero cells. Furthermore, in vitro assay was done against this enzyme for all analogues and the results showed two of them have IC50 data by 90 µM inhibitory activity. An extensive molecular docking simulation was run to analyse their antiviral mechanism that found the proper non-covalent interaction within the Mpro protease enzyme. Finally, we profiled two reversible inhibitors, COOH and F substituted analogues that might be promising drug candidates for further development have been discovered.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Ftalimidas , SARS-CoV-2 , Triazóis , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Ftalimidas/química , Ftalimidas/farmacologia , Ftalimidas/síntese química , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Células Vero , Chlorocebus aethiops , SARS-CoV-2/efeitos dos fármacos , Animais , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Modelos Moleculares
3.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834474

RESUMO

Phenylpyrazolo[3,4-d]pyrimidine is considered a milestone scaffold known to possess various biological activities such as antiparasitic, antifungal, antimicrobial, and antiproliferative activities. In addition, the urgent need for selective and potent novel anticancer agents represents a major route in the drug discovery process. Herein, new aryl analogs were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines: MCF-7, HCT116, and HePG-2. Some of these compounds showed potent cytotoxicity, with variable degrees of potency and cell line selectivity in antiproliferative assays with low resistance. As the analogs carry the pyrazolopyrimidine scaffold, which looks structurally very similar to tyrosine and receptor kinase inhibitors, the potent compounds were evaluated for their inhibitory effects on three essential cancer targets: EGFRWT, EGFRT790M, VGFR2, and Top-II. The data obtained revealed that most of these compounds were potent, with variable degrees of target selectivity and dual EGFR/VGFR2 inhibitors at the IC50 value range, i.e., 0.3-24 µM. Among these, compound 5i was the most potent non-selective dual EGFR/VGFR2 inhibitor, with inhibitory concentrations of 0.3 and 7.60 µM, respectively. When 5i was tested in an MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibited cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Molecular docking studies were performed to explore the binding mode and mechanism of such compounds on protein targets and mapped with reference ligands. The results of our studies indicate that the newly discovered phenylpyrazolo[3,4-d]pyrimidine-based multitarget inhibitors have significant potential for anticancer treatment.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Relação Estrutura-Atividade , Receptores ErbB/metabolismo , Proliferação de Células , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Mutação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antimetabólitos/farmacologia , Pirimidinas/farmacologia , Pirimidinas/química , Estrutura Molecular , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955929

RESUMO

In this study, an efficient multistep synthesis of novel aromatic tricyclic hybrids incorporating different biological active moieties, such as 1,3,4-thiadiazole and 1,2,4-triazole, was reported. These target scaffolds are characterized by having terminal lipophilic or hydrophilic parts, and their structures are confirmed by different spectroscopic methods. Further, the cytotoxic activities of the newly synthesized compounds were evaluated using in vitro MTT cytotoxicity screening assay against three different cell lines, including HepG-2, MCF-7, and HCT-116, compared with the reference drug Taxol. The results showed variable performance against cancer cell lines, exhibiting MCF-7 and HepG-2 selectivities by active analogs. Among these derivatives, 1,2,4-triazoles 11 and 13 and 1,3,4-thiadiazole 18 were found to be the most potent compounds against MCF-7 and HepG-2 cancer cells. Moreover, structure-activity relationship (SAR) studies led to the identification of some potent LSD1 inhibitors. The tested compounds showed good LSD1 inhibitory activities, with an IC50 range of 0.04-1.5 µM. Compounds 27, 23, and 22 were found to be the most active analogs with IC50 values of 0.046, 0.065, and 0.074 µM, respectively. In addition, they exhibited prominent selectivity against a MAO target with apparent cancer cell apoptosis, resulting in DNA fragmentation. This research provides some new aromatic-centered 1,2,4-triazole-3-thione and 1,3,4-thiadiazole analogs as highly effective anticancer agents with good LSD1 target selectivity.


Assuntos
Antineoplásicos , Histona Desmetilases , Antineoplásicos/química , Benzeno/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desmetilases/metabolismo , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Tiadiazóis , Triazóis/química
5.
Bioorg Chem ; 111: 104835, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798850

RESUMO

This study reports an efficient and convenient click chemistry synthesis of a novel series of phthalimide scaffold linked to 1,2,3 triazole ring and terminal lipophilic fragments. Structures of newly synthesized compounds were well characterized by different spectroscopic tools. In vitro MTT cytotoxicity assay was performed comparing the cytotoxic effects of newly synthesized compounds to staurosporine using three different types: human liver cancer cell line (HepG2), Michigan cancer foundation-7 (MCF-7) and human colorectal carcinoma cell line (HCT116). The initial screening showed excellent to moderate anticancer activity for these newly synthesized compounds with high degree of cell line selectivity with micromolar (µM) half maximal inhibitory concentration (IC50) values against tumor cells. The SAR analysis of these derivatives confirmed the role of molecular fragments including phthalimide, linker, triazole, and terminal tails in correlation to activity. In addition, enzymatic inhibitory assay against wild type EGFR was performed for the most active compounds to get more details about their mechanism of action. In order to further explore their binding affinities, molecular docking simulation was studied against EGFR site. The results obtained from molecular docking study and those obtained from cytotoxic screening were correlated. One of the most prominent analogs is (6f) with terminal disubstituted ring and amide linker showed selective MCF-7 cytotoxicity profile with IC50 0.22 µM and 79 nM to EGFR target. Extensive structure activity relationship (SAR) analyses were also carried out. The pharmacokinetic profile of (6f) was studied showing good metabolic stability and long duration behavior. This design offered a potent selective anticancer phthalimide-triazole leads for further optimization in cancer drug discovery.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Ftalimidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Triazóis/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Células Hep G2 , Humanos , Células MCF-7 , Estrutura Molecular , Ftalimidas/química , Ftalimidas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Relação Estrutura-Atividade , Triazóis/química , Triazóis/metabolismo
6.
Arch Pharm (Weinheim) ; 354(2): e2000277, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33078877

RESUMO

Herein, we report the synthesis and in vitro antimicrobial evaluation of novel quinoline derivatives as DNA gyrase inhibitors. The preliminary antimicrobial activity was assessed against a panel of pathogenic microbes including Gram-positive bacteria (Streptococcus pneumoniae and Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), and fungal strains (Aspergillus fumigatus, Syncephalastrum racemosum, Geotrichum candidum, and Candida albicans). Compounds that revealed the best activity were subjected to further biological studies to determine their minimum inhibitory concentrations (MICs) against the selected pathogens as well as their in vitro activity against the E. coli DNA gyrase, to realize whether their antimicrobial action is mediated via inhibition of this enzyme. Four of the new derivatives (14, 17, 20, and 23) demonstrated a relatively potent antimicrobial activity with MIC values in the range of 0.66-5.29 µg/ml. Among them, compound 14 exhibited a particularly potent broad-spectrum antimicrobial activity against most of the tested strains of bacteria and fungi, with MIC values in the range of 0.66-3.98 µg/ml. A subsequent in vitro investigation against the bacterial DNA gyrase target enzyme revealed a significant potent inhibitory activity of quinoline derivative 14, which can be observed from its IC50 value (3.39 µM). Also, a molecular docking study of the most active compounds was carried out to explore the binding affinity of the new ligands toward the active site of DNA gyrase enzyme as a proposed target of their activity. Furthermore, the ADMET profiles of the most highly effective derivatives were analyzed to evaluate their potentials to be developed as good drug candidates.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , DNA Girase/metabolismo , Quinolinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Relação Dose-Resposta a Droga , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
7.
Arch Pharm (Weinheim) ; 354(5): e2000449, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33559320

RESUMO

The lack of effective therapies for epileptic patients and the potentially harmful consequences of untreated seizure incidents have made epileptic disorders in humans a major health concern. Therefore, new and more potent anticonvulsant drugs are continually sought after, to combat epilepsy. On the basis of the pharmacophoric structural specifications of effective α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists with an efficient anticonvulsant activity, the present work reports the design and synthesis of two novel sets of quinoxaline derivatives. The anticonvulsant activity of the synthesized compounds was evaluated in vivo according to the pentylenetetrazol-induced seizure protocol, and the results were compared with those of perampanel as a reference drug. Among the synthesized compounds, 24, 28, 32, and 33 showed promising activities with ED50 values of 37.50, 23.02, 29.16, and 23.86 mg/kg, respectively. Docking studies of these compounds suggested that AMPA binding could be the mechanism of action of these derivatives. Overall, the pharmacophore-based structural optimization, in vivo and in silico docking, and druglikeness studies indicated that the designed compounds could serve as promising candidates for the development of effective anticonvulsant agents with good pharmacokinetic profiles.


Assuntos
Anticonvulsivantes/farmacologia , Quinoxalinas/farmacologia , Convulsões/tratamento farmacológico , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/antagonistas & inibidores , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pentilenotetrazol , Quinoxalinas/síntese química , Quinoxalinas/química , Convulsões/induzido quimicamente , Relação Estrutura-Atividade , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/administração & dosagem
8.
Bioorg Chem ; 100: 103899, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454390

RESUMO

Three novel series of triazolophthalazine derivatives bearing hydrazone moiety were designed, synthesized, and evaluated for their anticancer activity against four human cancer cell lines by MTT assay. Six derivatives demonstrated comparable activity with Doxorubicin reference drug against the selected cancer cells. Especially, compound 16 showed the most potent activity with IC50 values of 5.70, 8.04, 11.15, and 4.25, µM against HePG2, MCF-7, PC3, and HCT-116 respectively. Also, compound 26 exhibited comparable inhibitory effect with that of Doxorubicin against the selected cancer cell lines with IC50 values of 6.45, 8.63, 12.28, and 7.03 µM against HePG2, MCF-7, PC3, and HCT-116 respectively. Investigation of the apoptotic activity of the two most active compounds revealed that compounds 16 and 26 could induce both the early and the late apoptosis of HePG2. Further mechanistic study of the HePG2 cell cycle confirmed the spectacular cytotoxic and apoptotic effects of both compounds. Compounds 16 and 26 showed a pronounced increase in cells in G2/M and Pre G1 phases with a concomitant reduction of cells in G0-G1 and S phases. A follow up enzymatic assay indicated that these two compounds have comparable activities with that of bromosporine as PCAF inhibitors with IC50 values of 8.13 and 5.31 µM respectively. Moreover, molecular docking study for all the synthesized compounds was performed to predict their binding affinities toward the active site of histone acetyltransferase GCN5. Results of molecular docking were strongly correlated with that of the cytotoxicity study.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Ftalazinas/química , Ftalazinas/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Triazóis/química , Triazóis/farmacologia , Fatores de Transcrição de p300-CBP/metabolismo
9.
Bioorg Chem ; 103: 104133, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745759

RESUMO

A series of benzothiazole/isatin linked to 1,2,3-triazole moiety and terminal sulpha drugs 5a-e and 6a-e were synthesized and evaluated for cytotoxic activity against a panel of cancer cell lines. The novel compounds showed variable IC50 range of activity and some of them were potent compared to reference drug. The promising compounds were subjected as postulated the mimicry proposal for quinazoline-based EGFR inhibitors for their inhibitory profile against EGFR TK enzyme. That data obtained revealed that most of these compounds were potent EGFR TK inhibitors at nanomolar concentrations. Among these, compounds 5a and 5b showed more potent activity on EGFR compared to erlotinib (IC50 103 and 104 versus 67.6 nM). Based upon the results, molecular docking analysis was performed on EGFR receptor and proved the strong contribution of fragments; benzothiazole, isatin, and triazole to the binding ATP pocket. When these selected compounds 5a and 5b were tested in an HepG2 model, they could effectively inhibited tumor growth, strongly induced cancer cell apoptosis, and suppressed cell cycle progression leading to DNA fragmentation. Well-DMET profile of the most active derivatives was presented and compared to the reference drugs. Taken together, we introduced novel triazole-sulpha drug hybrid for the first time as EGFR inhibitors and the results of our studies indicate that the newly discovered inhibitors have significant potential for anticancer treatment.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Isatina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzotiazóis/síntese química , Benzotiazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Isatina/síntese química , Isatina/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Relação Estrutura-Atividade , Triazóis/química
10.
Bioorg Chem ; 99: 103781, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222620

RESUMO

A series of novel 2-Amino-4-Methylthiazole analogs were developed via three-step reaction encompassing hydrazine-1-carboximidamide motif to combat Gram-positive and Gram-negative bacterial and fungal infections. Noticeably, the thiazole-carboximidamide derivatives 4a-d displayed excellent antimicrobial activity and the most efficacious analogue 4d with MIC/MBC values of 0.5 and 4 µg/mL, compared to reference drugs with very low toxicity to mammalian cells, resulting in a prominent selectivity more than 100 folds. Microscopic investigation of 4d biphenyl analogue showed cell wall lysis and promote rapid bactericidal activity though disrupting the bacterial membrane. In addition, an interesting in vitro investigation against GlcN-6-P Synthase Inhibition was done which showed potency in the nanomolar range. Meanwhile, this is the first study deploying a biomimicking strategy to design potent thiazole-carboximidamides that targeting GlcN-6-P Synthase as antimicrobial agents. Importantly, Molecular modeling simulation was done for the most active 4d analogue to study the interaction of this analogue which showed good binding propensity to glucosamine binding site which support the in vitro data.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/antagonistas & inibidores , Tiazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus niger/efeitos dos fármacos , Aspergillus oryzae/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Estrutura Molecular , Pseudomonas/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
11.
Bioorg Chem ; 101: 103992, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554279

RESUMO

Thiazole derivatives are known to possess various biological activities such as antiparasitic, antifungal, antimicrobial and antiproliferative activities. Matrix metalloproteinases (MMPs) are important protease target involved in tumor progression including angiogenesis, tissue invasion, and migration. Therefore, MMPs have also been reported as potential diagnostic and prognostic biomarkers in many types of cancer. Herein, new aryl thiazoles were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines including the invasive MDA-MB-231 line. Some of these compounds showed IC50 values in the submicromolar range in anti-proliferative assays. In order to examine the relationship between their anticancer activity and MMPs targets, the compounds were evaluated for their inhibitory effects on MMP-2 and 9. That data obtained revealed that most of these compounds were potent dual MMP-2/9 inhibitors at nanomolar concentrations. Among these, 2-(1-(2-(2-((E)-4-iodobenzylidene)hydrazineyl)-4-methylthiazol-5-yl)ethylidene)hydrazine-1-carboximidamide (4a) was the most potent non-selective dual MMP-2/9 inhibitor with inhibitory concentrations of 56 and 38 nM respectively. When compound 4a was tested in an MDA-MB-231, HCT-116, MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibit cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Taken together, the results of our studies indicate that the newly discovered thiazole-based MMP-2/9 inhibitors have significant potential for anticancer treatment.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Descoberta de Drogas , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Triazóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacocinética , Relação Estrutura-Atividade , Cicatrização/efeitos dos fármacos
12.
Bioorg Chem ; 105: 104387, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130344

RESUMO

7H-Benzo[7,8]chromeno[2,3-d]pyrimidin-9(8H)-amine (6a,b) have been synthesized via hydrazinolysis of the imidates (5a,b). Polysubstituted chromenotriazolopyrimidine (7a-j), (12a,b) and Schiff base (8a,b) derivatives have also been prepared. The new heterocyclic derivatives were affirmed by spectral data. The target compounds have been screened for antibacterial and antifungal activity. Compounds 6a,b and 7a-c, g,h displayed the most favorable antimicrobial activities in resemblance to the reference antimicrobial agents by IZ range over 24 mm. In addition, MIC, MBC and MFC were also tested and screen for most active compound 6a by 6.25 µg/mL showing bactericidal effect. SAR study revealed that the antimicrobial vitality of the target compounds was safely influenced by the lipophilicity substituents and the calculated log P value. The potent compounds were subjected into in vitro enzyme screening (14α-Demethylase and DNA Gyrase) against both interesting targets and showed good inhibitory profile. Molecular modeling analyses were introduced and discussed focusing on the docking of active compounds into two essential targets, and their ADMET properties were studied.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Benzopiranos/farmacologia , Inibidores da Topoisomerase II/farmacologia , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/química , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus/efeitos dos fármacos , Benzopiranos/síntese química , Benzopiranos/química , Candida albicans/efeitos dos fármacos , DNA Girase/metabolismo , Relação Dose-Resposta a Droga , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Esterol 14-Desmetilase/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
13.
Bioorg Chem ; 101: 103953, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32474179

RESUMO

Curcumin and trans-cinnamaldehyde are acrolein-based Michael acceptor compounds that are commonly found in domestic condiments, and known to cause cancer cell death via redox mechanisms. Based on the structural features of these compounds we designed and synthesized several 2-cinnamamido-N-substituted-cinnamamide (bis-cinnamamide) compounds. One of the derivatives, (Z)-2-[(E)-cinnamamido]-3-phenyl-N-propylacrylamide 8 showed a moderate antiproliferative potency (HCT-116 cell line inhibition of 32.0 µM), no inhibition of normal cell lines C-166, and proven cellular activities leading to apoptosis. SAR studies led to more than 10-fold increase in activity. Our most promising compound, [(Z)-3-(1H-indol-3-yl)-N-propyl-2-[(E)-3-(thien-2-yl)propenamido)propenamide] 45 killed colon cancer cells at IC50 = 0.89 µM (Caco-2), 2.85 µM (HCT-116) and 1.65 µM (HT-29), while exhibiting much weaker potency on C-166 and BHK normal cell lines (IC50 = 71 µM and 77.6 µM, respectively). Cellular studies towards identifying the compounds mechanism of cytotoxic activities revealed that apoptotic induction occurs in part as a result of oxidative stress. Importantly, the compounds showed inhibition of cancer stem cells that are critical for maintaining the potential for self-renewal and stemness. The results presented here show discovery of covalently acting Michael addition compounds that potently kill cancer cells by a defined mechanism, with prominent selectivity profile over non-cancerous cell lines.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cinamatos/farmacologia , Neoplasias do Colo/patologia , Estresse Oxidativo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Humanos
14.
Bioorg Chem ; 96: 103656, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32062449

RESUMO

A novel series of [1,2,4]triazolo[4,3-a]quinoxaline derivatives of different heteroaromatization members were synthesized. The newly synthesized molecules were explored for their potential antimicrobial activities against a panel of pathogenic organisms. Among these derivatives, the chalcone compound 6e with a methoxy substituent exhibited broad potent antimicrobial activity against most of the bacterial and fungal strains. Furthermore, the analysis of the SAR disclosed that the linker and terminal aromatic fragments perform critical roles in exerting antibacterial activity. The molecular docking calculations were executed on two of the most bacterial targets, ATP-binding sites of DNA gyrase B, and the folate-binding site of DHFR enzymes. The results presented good binding data to the pockets of both enzymes showing different linkers contributions through the hydrogen-bonding and aromatic stacking interactions that stabilize the compounds in their pockets taking 6e compound as representative of most active analogs. In addition, good pharmacokinetic profiling data for the 6e compound was obtained and compared to reference drugs. Accordingly, our findings suggest that [1,2,4]triazolo[4,3-a]quinoxaline scaffold is an interesting precursor for the design of potent antimicrobial agents with multitarget inhibition.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/enzimologia , Antagonistas do Ácido Fólico/farmacologia , Quinoxalinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , DNA Girase/metabolismo , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacocinética , Humanos , Modelos Moleculares , Quinoxalinas/química , Quinoxalinas/farmacocinética , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacocinética , Triazóis/química , Triazóis/farmacocinética , Triazóis/farmacologia
15.
J Enzyme Inhib Med Chem ; 35(1): 733-743, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32189526

RESUMO

We evaluated the hCA (CA, EC 4.2.1.1) inhibitory activity of novel 4-(2-(2-substituted-thio-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides (compounds 2-20) towards the isoforms I, II, IX, and XII. hCA Isoforms were effectively inhibited by most of new compounds comparable to those of AAZ. Compounds 2 and 4 showed interestingly efficient and selective antitumor (hCA IX and hCA XII) inhibitor activities (KIs; 40.7, 13.0, and 8.0, 10.8 nM, respectively). Compounds 4 and 5 showed selective hCA IX inhibitory activity over hCA I (SI; 95 and 24), hCA IX/hCA II (SI; 23 and 5.8) and selective hCA XII inhibitory activity over hCA I (SI; 70 and 44), hCA XII/hCA II, (SI; 17 and 10) respectively compared to AAZ. Compounds 12-17, and 19-20 showed selective inhibitory activity towards hCA IX over hCA I and hCA II, with selectivity ranges of 27-195 and 3.2-19, respectively, while compounds 12, 14-17, and 19 exhibited selective inhibition towards hCA XII over hCA I and hCA II, with selectivity ratios of 48-158 and 5.4-31 respectively, compared to AAZ. Molecular docking analysis was carried out to investigate the selective interactions among the most active derivatives, 17 and 20 and hCAs isoenzymes. Compounds 17 and 20, which are highly selective CA IX and XII inhibitors, exhibited excellent interaction within the putative binding site of both enzymes, comparable to the co-crystallized inhibitors.HighlightsQuinazoline-linked ethylbenzenesulfonamides inhibiting CA were synthesised.The new molecules potently inhibited the hCA isoforms I, II, IV, and IX.Compounds 4 and 5 were found to be selective hCA IX/hCA I and hCA IX/hCA II inhibitors.Compounds 4 and 5 were found to be selective hCA XII/hCA I and hCA XII/hCA II inhibitors.Compounds 12-17, 19, and 20 were found to be selective hCA IX/hCA I and hCA IX/hCA II inhibitors.Compounds 12, 14-17, 19 were found to be selective hCA XII/hCA I and hCA XII/hCA II inhibitors.Compounds 4 and 5 are selective hCA IX and XII inhibitors over hCA I (selectivity ratios of 95, 23, and 24, 5.8, respectively) and hCA II (selectivity ratios of 70, 17, and 44, 10 respectively). Compounds 12-17, and 19-20 are selective hCA IX inhibitors over hCA I (selectivity ratios of 27-195) and hCA II (selectivity ratios of 3.2-19). Compounds 12, 14-17 and 19 are also selective hCA XII inhibitors over hCA I (selectivity ratios of 48-158) and hCA II (selectivity ratios of 5.4-31).


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Quinazolinonas/farmacologia , Sulfonamidas/farmacologia , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinonas/química , Relação Estrutura-Atividade , Sulfonamidas/química
16.
J Enzyme Inhib Med Chem ; 35(1): 598-609, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32009479

RESUMO

Inhibitory action of newly synthesised 4-(2-(2-substituted-thio-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides compounds 2-13 against human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII, was evaluated. hCA I was efficiently inhibited by compounds 2-13 with inhibition constants (KIs) ranging from 57.8-740.2 nM. Compounds 2, 3, 4, and 12 showed inhibitory action against hCA II with KIs between 6.4 and 14.2 nM. CA IX exhibited significant sensitivity to inhibition by derivatives 2-13 with KI values ranging from 7.1 to 93.6 nM. Compounds 2, 3, 4, 8, 9, and 12 also exerted potent inhibitory action against hCA XII (KIs ranging from 3.1 to 20.2 nM). Molecular docking studies for the most potent compounds 2 and 3 were conducted to exhibit the binding mode towards hCA isoforms as a promising step for SAR analyses which showed similar interaction with co-crystallized ligands. As such, a subset of these mercaptoquinazolin-4(3H)-one compounds represented interesting leads for developing new efficient and selective carbonic anhydrase inhibitors (CAIs) for the management of a variety of diseases including glaucoma, epilepsy, arthritis and cancer.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Quinazolinas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
17.
Arch Pharm (Weinheim) ; 353(12): e2000170, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32893368

RESUMO

Three novel series of 1,2,4-triazole derivatives were designed and synthesized as potential adenosine A2B receptor antagonists. The design of the new compounds depended on a virtual screening of a previously constructed library of compounds targeting the human adenosine A2B protein. Spectroscopic techniques including 1 H nuclear magnetic resonance (NMR) and 13 C NMR, and infrared and mass spectroscopy were used to confirm the structures of the synthesized compounds. The in vitro cytotoxicity evaluation was carried out against a human breast adenocarcinoma cell line (MDA-MB-231) using the MTT assay, and the obtained results were compared with doxorubicin as a reference anticancer agent. In addition, in silico studies to propose how the two most active compounds interact with the adenosine A2B receptor as a potential target were performed. Furthermore, a structure-activity relationship analysis was performed, and the pharmacokinetic profile to predict the oral bioavailability and other pharmacokinetic properties was also explained. Four of our designed derivatives showed promising cytotoxic effects against the selected cancer cell line. Compound 15 showed the highest activity with an IC50 value of 3.48 µM. Also, compound 20 revealed an equipotent activity with the reference cytotoxic drug, with an IC50 value of 5.95 µM. The observed IC50 values were consistent with the obtained in silico docking scores. The newly designed compounds revealed promising pharmacokinetic profiles as compared with the reference marketed drug.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Receptor A2B de Adenosina/efeitos dos fármacos , Triazóis/farmacologia , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/farmacocinética , Administração Oral , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Biotransformação , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Feminino , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Ligação Proteica , Receptor A2B de Adenosina/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/farmacocinética
18.
Bioorg Chem ; 92: 103262, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518757

RESUMO

This report presents the development of a novel and primary model of sulfonamide compounds encompassing a chromene azo motif with the intent of becoming applicable for drug candidates in the cases of drug-resistant pathogens. The novel molecules (7a-n) have been synthesized via a two-step reaction. First, 4-((2, 4-dihydroxyphenyl)diazenyl)benzenesulfonamide (3a-e) were obtained through the reaction of their corresponding diazotized 4-aminobenzenesulfonamides (1a-e) with resorcinol, followed by the heterocyclization of 3a-e with arylidenemalononitriles (6a-d). Upon structural identification, the newly synthesized compounds were evaluated for their antibacterial and antifungal activities. Moreover, their cytotoxic screening was performed against three cancer cell lines: HCT-116, HepG-2, and MCF-7. Further examinations were comprised of the inhibitory effect analyses of the novel sulfonamide/chromene derivatives against the HDAC classes and the Tubulin polymerization in order to discern the prime antitumor drug candidates.


Assuntos
Antineoplásicos/farmacologia , Compostos Azo/farmacologia , Benzopiranos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Azo/química , Benzopiranos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Estrutura Molecular , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Bioorg Chem ; 76: 332-342, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227917

RESUMO

Fifteen new substituted N-2-(2-oxo-3-phenylquinoxalin-1(2H)-yl) acetamides 5a-f, 6a-f, and 8a-c were synthesized by reacting ethyl 2-(2-oxo-3-phenylquinoxalin-1(2H)-yl)acetate with various primary amines including benzylamines, sulfonamides, and amino acids. The in vitro antimicrobial screening of the target compounds was screened to assess their antibacterial and antifungal activity. As a result, seven compounds namely; 5a, 5c, 5d, 6a, 6c, 8b and 8c showed a promising broad spectrum antibacterial activity against both Gram-positive and Gram-negative strains. Among these, the analogs 5c and 6d were nearly as equiactive as ciprofloxacin drug. Meanwhile, four compounds namely; 5c, 6a, 6f and 8c exhibited appreciable antifungal activity with MIC values range 33-40 mg/mL comparable with clotrimazole (MIC 25 mg/mL). In addition, the anticancer effects of the synthesized compounds were evaluated against three cancer lines. The data obtained revealed the benzylamines and sulpha derivatives were the most active compounds especially 5f and 6f ones. Further EGFR enzymatic investigation was carried out for these most active compounds 5f and 6f resulting in inhibitory activity by 1.89 and 2.05 µM respectively. Docking simulation was performed as a trial to study the mechanisms and binding modes of these compounds toward the enzyme target, EGFR protein kinase enzyme. The results revealed good compounds placement in the active sites and stable interactions similar to the co-crystallized reference ligand. Collectively, the analogs 5f and 6f could be further utilized and optimized as good cytotoxic agents.


Assuntos
Acetamidas/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Acetamidas/síntese química , Acetamidas/química , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Ciprofloxacina/farmacologia , Clotrimazol/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios Enzimáticos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Receptor ErbB-2/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
20.
J Enzyme Inhib Med Chem ; 33(1): 1074-1088, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29923425

RESUMO

In our effort to develop novel and powerful agents with anti-proliferative activity, two new series of 1H-benzo[f]chromene derivatives, 4a-h and 6a-h, were synthesised using heterocyclocondensation methodologies under microwave irradiation condition. The structures of the target compounds were established on the basis of their spectral data, IR, 1H NMR, 13 C NMR, 13 C NMR-DEPT/APT, and MS data. The new compounds have been examined for their anti-proliferative activity against three cancer cell lines, MCF-7, HCT-116, and HepG-2. Vinblastine and Doxorubicin have been used as positive controls in the viability assay. The obtained results confirmed that most of the tested molecules revealed strong and selective cytotoxic activity against the three cancer cell lines. Moreover, these molecules exhibited weak cytotoxicity on the HFL-1 line, which suggested that they might be ideal anticancer candidates. The SAR study of the new benzochromene compounds verified that the substituents on the phenyl ring of 1H-benzo[f]chromene nucleus, accompanied with the presence of bromine atom or methoxy group at the 8-position, increases the ability of these molecules against the different cell lines. Due to their high anti-proliferative activity, compounds 4c and 6e were selected to be examined their proficiency to inhibit the invasiveness of the highly sensitive and invasive breast cancer cell line, MDA-MB-231. The anti-invasion behaviour of these molecules against the highly sensitive, non-oestrogen, and progesterone MDA-MB-231 cell line gave rise to their decreasing metastatic effect compared to the reference drug. Furthermore, this report explores the apoptotic mechanistic pathway of the cytotoxicity of the target compounds and reveals that most of these compounds enhance the Caspase 3/7 activity that could be considered as potential anticancer agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Antineoplásicos/síntese química , Proteína Tirosina Quinase CSK , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Micro-Ondas , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA