Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138453

RESUMO

Thin films of zinc oxide (ZnO) doped with transition metals have recently gained significant attention due to their potential applications in a wide range of optoelectronic devices. This study focuses on ZnO thin films doped with the transition metals Co, Fe, and Zr, exploring various aspects of their structural, morphological, optical, electrical, and photoluminescence properties. The thin films were produced using RF and DC co-sputtering techniques. The X-ray diffraction (XRD) analysis revealed that all the doped ZnO thin films exhibited a stable wurtzite crystal structure, showcasing a higher structural stability compared to the undoped ZnO, while the atomic force microscopy (AFM) imaging highlighted a distinctive granular arrangement. Energy-dispersive X-ray spectroscopy was employed to confirm the presence of transition metals in the thin films, and Fourier-transform infrared spectroscopy (FTIR) was utilized to investigate the presence of chemical bonding. The optical characterizations indicated that doping induced changes in the optical properties of the thin films. Specifically, the doped ZnO thin film's bandgap experienced a significant reduction, decreasing from 3.34 to 3.30 eV. The photoluminescence (PL) analysis revealed distinguishable emission peaks within the optical spectrum, attributed to electronic transitions occurring between different bands or between a band and an impurity. Furthermore, the introduction of these transition metals resulted in decreased resistivity and increased conductivity, indicating their positive influence on the electrical conductivity of the thin films. This suggests potential applications in solar cells and light-emitting devices.

2.
ACS Omega ; 8(17): 15450-15457, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151528

RESUMO

This study reports the synthesis of ferric vanadate (FeVO4) via a facile hydrothermal method, focusing on demonstrating its exceptional electrochemical (EC) properties on detecting low-density ascorbic acid (AA). The phase purity, crystallinity, structure, morphology, and chemical compositional properties were characterized by employing X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy techniques. EC impedance spectroscopy and cyclic voltammetry techniques were also adopted in order to assess the EC response of a FeVO4-modified glassy carbon electrode for sensing AA at room temperature. The AA concentration range adopted in this experiment is 0.1-0.3 mM at a working electric potential of -0.13 V. The result showed functional excellence of this material for the EC determination of AA with good stability and reproducibility, promising its potentiality in connection with relevant sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA