Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685909

RESUMO

Plasmonic molecules, which are geometrically well-defined plasmonic metal nanoparticle clusters, have attracted significant attention due to their enhancement of light-matter interactions owing to a stronger electric field enhancement than that by single particles. High-resolution lithography techniques provide precise positioning of plasmonic nanoparticles, but their fabrication costs are excessively high. In this study, we propose a lithography-free, self-assembly fabrication method, termed the dual-dewetting process, which allows the control of the size and density of gold nanoparticles. This process involves depositing a gold thin film on a substrate and inducing dewetting through thermal annealing, followed by a second deposition and annealing. The method achieves a uniform distribution of particle size and density, along with increased particle density, across a 6-inch wafer. The superiority of the method is confirmed by a 30-fold increase in the signal intensity of surface-enhanced Raman scattering following the additional dewetting with an 8 nm film, compared to single dewetting alone. Our findings indicate that the dual-dewetting method provides a simple and efficient approach to enable a variety of plasmonic applications through efficient plasmonic molecule large-area fabrication.


Assuntos
Nanopartículas Metálicas , Ouro , Eletricidade , Filmes Cinematográficos , Tamanho da Partícula
2.
Nanophotonics ; 13(17): 3147-3154, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055568

RESUMO

The metasurfaces have shown great potential for miniaturizing conventional optics while offering extended flexibility. Recently, there has been considerable interest in using algorithms to generate meta-atom shapes for these metasurfaces, as they offer vast design freedom and not biased by the human intuition. However, these complex designs significantly increase the difficulty of fabrication. To address this, we introduce a design process that rigorously enforces the fabricability of both the material-filled (fill) and empty (void) regions in a metasurface design. This process takes into account specific constraints regarding the minimum feature size for each region. Additionally, it corrects any violations of these constraints across the entire device, ensuring only minimal impact on performance. Our method provides a practical way to create metasurface designs that are easy to fabricate, even with complex shapes, hence improving the overall production yield of these advanced meta-optical components.

3.
Sci Adv ; 10(36): eadp5192, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39231222

RESUMO

Light fields carry a wealth of information, including intensity, spectrum, and polarization. However, standard cameras capture only the intensity, disregarding other valuable information. While hyperspectral and polarimetric imaging systems capture spectral and polarization information, respectively, in addition to intensity, they are often bulky, slow, and costly. Here, we have developed an encoding metasurface paired with a neural network enabling a normal camera to acquire hyperspectro-polarimetric images from a single snapshot. Our experimental results demonstrate that this metasurface-enhanced camera can accurately resolve full-Stokes polarization across a broad spectral range (700 to 1150 nanometer) from a single snapshot, achieving a spectral sensitivity as high as 0.23 nanometer. In addition, our system captures full-Stokes hyperspectro-polarimetric video in real time at a rate of 28 frames per second, primarily limited by the camera's readout rate. Our encoding metasurface offers a compact, fast, and cost-effective solution for multidimensional imaging that effectively uses information within light fields.

4.
RSC Adv ; 11(51): 32305-32311, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35495545

RESUMO

Over the last decade, the M13 bacteriophage has been used widely in various applications, such as sensors, bio-templating, and solar cells. The M13 colorimetric sensor was developed to detect toxic gases to protect the environment, human health, and national security. Recent developments in phage-based colorimetric sensor technologies have focused on improving the sensing characteristics, such as the sensitivity and selectivity on a large scale. On the other hand, few studies have examined precisely controllable micro-patterning techniques in phage-based self-assembly. This paper developed a color patterning technique through self-assembly of the M13 bacteriophages. The phage was self-assembled into a nanostructure through precise temperature control at the meniscus interface. Furthermore, barcode color patterns could be fabricated using self-assembled M13 bacteriophage on micrometer scale areas by manipulating the grooves on the SiO2 surface. The color patterns exhibited color tunability based on the phage nano-bundles reactivity. Overall, the proposed color patterning technique is expected to be useful for preparing new color sensors and security patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA