Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 23(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439407

RESUMO

Lignin availability has increased significantly due to the commercialization of several processes for recovery and further development of alternatives for integration into Kraft pulp mills. Also, progress in lignin characterization, understanding of its chemistry as well as processing methods have resulted in the identification of novel lignin-based products and potential derivatives, which can serve as building block chemicals. However, all these have not led to the successful commercialization of lignin-based chemicals and materials. This is because most analyses and characterizations focus only on the technical suitability and quantify only the composition, functional groups present, size and morphology. Optical properties, such as the colour, which influences the uptake by users for diverse applications, are neither taken into consideration nor analysed. This paper investigates the quantification of lignin optical properties and how they can be influenced by process operating conditions. Lignin extraction conditions were also successfully correlated to the powder colour. About 120 lignin samples were collected and the variability of their colours quantified with the CIE L*a*b* colour space. In addition, a robust and reproducible colour measurement method was developed. This work lays the foundation for identifying chromophore molecules in lignin, as a step towards correlating the colour to the functional groups and the purity.


Assuntos
Corantes/química , Lignina/isolamento & purificação , Dióxido de Carbono/química , Indústria Química/métodos , Cor , Corantes/isolamento & purificação , Lignina/química , Modelos Moleculares , Fuligem/química
2.
Sci Adv ; 8(3): eabj7523, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044829

RESUMO

Chemocatalytic lignin valorization strategies are critical for a sustainable bioeconomy, as lignin, especially technical lignin, is one of the most available and underutilized aromatic feedstocks. Here, we provide the first report of an intensified reactive distillation­reductive catalytic deconstruction (RD-RCD) process to concurrently deconstruct technical lignins from diverse sources and purify the aromatic products at ambient pressure. We demonstrate the utility of RD-RCD bio-oils in high-performance additive manufacturing via stereolithography 3D printing and highlight its economic advantages over a conventional reductive catalytic fractionation/RCD process. As an example, our RD-RCD reduces the cost of producing a biobased pressure-sensitive adhesive from softwood Kraft lignin by up to 60% in comparison to the high-pressure RCD approach. Last, a facile screening method was developed to predict deconstruction yields using easy-to-obtain thermal decomposition data. This work presents an integrated lignin valorization approach for upgrading existing lignin streams toward the realization of economically viable biorefineries.

3.
Chem Commun (Camb) ; 57(14): 1782-1785, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33475102

RESUMO

Trial-and-error approaches for lignin applications and new product development is resource intensive. By quantifying the solubility parameters for 45 different lignins encompassing all sources as well as existing commercial scale processes for their recovery, computer-based predictions of lignin solvent-based fractionation and compatibility with various polymers are now possible, paving a pathway for improved chemical analytics and industrial applications.

4.
Bioresour Technol ; 291: 121799, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31351375

RESUMO

The aim of this work is to develop a novel green solvent based sustainable process to refine lignin into low molecular weight (LMW) and high molecular weight (HMW) fractions. Lignin dispersity reduction were experimentally determined using four solvent mixtures, and benchmarked against eight pure solvents. Data outputs were used for modelling the integrated fractionation process. Dispersity reduction of up to 73% was achieved for the high value LMW fraction. Also, a 90% reduction of energy requirement was achieved with an optimized process incorporating a mechanical vapor compression system. This study showed that solvent mixtures involving water can significantly reduce the cost, environment, health and safety impacts of lignin fractionation. Techno-economic evaluation confirmed the economic viability of a large-scale process processing 50 tonne/day of lignin.


Assuntos
Lignina/química , Fracionamento Químico , Peso Molecular , Solventes
5.
Membranes (Basel) ; 7(4)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244761

RESUMO

Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO) membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA