Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 35, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570878

RESUMO

BACKGROUND: To investigate the genetics of early-onset progressive cerebellar ataxia in Iran, we conducted a study at the Children's Medical Center (CMC), the primary referral center for pediatric disorders in the country, over a three-year period from 2019 to 2022. In this report, we provide the initial findings from the national registry. METHODS: We selected all early-onset patients with an autosomal recessive mode of inheritance to assess their phenotype, paraclinical tests, and genotypes. The clinical data encompassed clinical features, the Scale for the Assessment and Rating of Ataxia (SARA) scores, Magnetic Resonance Imaging (MRI) results, Electrodiagnostic exams (EDX), and biomarker features. Our genetic investigations included single-gene testing, Whole Exome Sequencing (WES), and Whole Genome Sequencing (WGS). RESULTS: Our study enrolled 162 patients from various geographic regions of our country. Among our subpopulations, we identified known and novel pathogenic variants in 42 genes in 97 families. The overall genetic diagnostic rate was 59.9%. Notably, we observed PLA2G6, ATM, SACS, and SCA variants in 19, 14, 12, and 10 families, respectively. Remarkably, more than 59% of the cases were attributed to pathogenic variants in these genes. CONCLUSIONS: Iran, being at the crossroad of the Middle East, exhibits a highly diverse genetic etiology for autosomal recessive hereditary ataxia. In light of this heterogeneity, the development of preventive strategies and targeted molecular therapeutics becomes crucial. A national guideline for the diagnosis and management of patients with these conditions could significantly aid in advancing healthcare approaches and improving patient outcomes.


Assuntos
Degenerações Espinocerebelares , Criança , Humanos , Irã (Geográfico)/epidemiologia , Degenerações Espinocerebelares/genética , Testes Genéticos , Fenótipo , Genes Recessivos
2.
J Immunol ; 211(3): 497-507, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294291

RESUMO

Cachexia is a major cause of death in cancer and leads to wasting of cardiac and skeletal muscle, as well as adipose tissue. Various cellular and soluble mediators have been postulated in driving cachexia; however, the specific mechanisms behind this muscle wasting remain poorly understood. In this study, we found polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) to be critical for the development of cancer-associated cachexia. Significant expansion of PMN-MDSCs was observed in the cardiac and skeletal muscles of cachectic murine models. Importantly, the depletion of this cell subset, using depleting anti-Ly6G Abs, attenuated this cachectic phenotype. To elucidate the mechanistic involvement of PMN-MDSCs in cachexia, we examined major mediators, that is, IL-6, TNF-α, and arginase 1. By employing a PMN-MDSC-specific Cre-recombinase mouse model, we showed that PMN-MDSCs were not maintained by IL-6 signaling. In addition, PMN-MDSC-mediated cardiac and skeletal muscle loss was not abrogated by deficiency in TNF-α or arginase 1. Alternatively, we found PMN-MDSCs to be critical producers of activin A in cachexia, which was noticeably elevated in cachectic murine serum. Moreover, inhibition of the activin A signaling pathway completely protected against cardiac and skeletal muscle loss. Collectively, we demonstrate that PMN-MDSCs are active producers of activin A, which in turn induces cachectic muscle loss. Targeting this immune/hormonal axis will allow the development of novel therapeutic interventions for patients afflicted with this debilitating syndrome.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Arginase/metabolismo , Caquexia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Miocárdio , Músculo Esquelético/metabolismo
3.
Nano Lett ; 24(35): 10834-10841, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39093057

RESUMO

In this study, we present an innovative approach leveraging combination internal resonances within a NEMS platform to generate mechanical soliton frequency combs (FCs) spanning a broad spectrum. In the time domain, the FCs take the form of a periodic train of narrow pulses, a highly coveted phenomenon within the realm of nonlinear wave-matter interactions. Our method relies on an intricate interaction among multiple vibration modes of a bracket-nanocantilever enabled by the strong nonlinearity of the electrostatic field. Through numerical simulation and experimental validation, we demonstrate that by amplifying the motions of the NEMS with the external electrostatic forcing tuned to excite the superharmonic resonance of order-n of the fundamental mode and exploiting combination internal resonances, we can generate multiple stable localized mechanical wave packets with different lobe sizes embodying soliton states I and II. This represents a significant breakthrough with profound implications for quantum computing and metrology.

4.
Cerebellum ; 22(4): 640-650, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35731353

RESUMO

Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS) is now increasingly identified from all countries over the world, possibly rendering it one of the most common autosomal recessive ataxias. Here, we selected patients harboring SACS variants, the causative gene for ARSACS, in a large cohort of 137 patients with early-onset ataxia recruited from May 2019 to May 2021 and were referred to the ataxia clinic. Genetic studies were performed for 111 out of 137 patients (81%) which led to a diagnostic rate of 72.9% (81 out of 111 cases). Ten patients with the molecular diagnosis of ARSACS were identified. We investigated the phenotypic and imaging spectra of all confirmed patients with ARSACS. We also estimated the frequency of ARSACS in this cohort and described their clinical and genetic findings including seven novel variants as well as novel neuroimaging findings. While the classic clinical triad of ARSACS is progressive cerebellar ataxia, spasticity, and sensorimotor polyneuropathy, it is not a constant feature in all patients. Sensorimotor axonal-demyelinating neuropathy was detected in all of our patients, but spasticity and extensor plantar reflex were absent in 50% (5/10). In all patients, brain magnetic resonance imaging (MRI) showed symmetric linear hypointensities in the pons (pontine stripes) and anterior superior cerebellar atrophy as well as a hyperintense rim around the thalami (thalamic rim). Although infratentorial arachnoid cyst has been reported in ARSACS earlier, we report anterior temporal arachnoid cyst in two patients for the first time, indicating that arachnoid cyst may be an associated imaging feature of ARSACS. We also extended molecular spectrum of ARSACS by presenting 8 pathogenic and one variant of unknown significance (VUS) sequence variants, which 7 of them have not been reported previously. MetaDome server confirmed that the identified VUS variant was in the intolerant regions of sacsin protein encoded by SACS.


Assuntos
Ataxia Cerebelar , Cistos , Ataxias Espinocerebelares , Humanos , Irã (Geográfico) , Mutação/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Espasticidade Muscular/diagnóstico por imagem , Espasticidade Muscular/genética , Neuroimagem
5.
Can J Surg ; 65(2): E193-E202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35292525

RESUMO

BACKGROUND: The increasing use of kidneys from donations after cardiac death (DCD) for renal transplantation is hindered by negative outcomes owing to organ injury after prolonged warm and cold ischemia-reperfusion. Recently, hydrogen sulfide (H2S) has shown cytoprotective effects against ischemia-reperfusion injury; however, its effectiveness in the context of DCD renal transplantation is unknown. METHODS: We tested a novel 30-day in vivo syngeneic murine model of DCD renal transplantation, in which the donor kidney was clamped for 30 minutes and stored for 18 hours in cold University of Wisconsin (UW) solution or UW with 150 µM sodium hydrogen sulfide (UW + NaHS) before transplantation. We also tested a 7-day in vivo porcine model of DCD renal autotransplantation, in which the left kidney was clamped for 60 minutes and preserved for 24 hours using hypothermic perfusion with UW or UW + 150 µM NaHS before autotransplantation. We collected blood and urine samples periodically, and collected kidney samples at the end point for histopathology and quantitative reverse transcription polymerase chain reaction. RESULTS: Rats that received H2S-treated kidneys showed significantly higher survival, faster recovery of graft function and significantly lower acute tubular necrosis than controls. Pig kidneys perfused with UW + NaHS showed significantly higher renal blood flow and lower renal resistance than control kidneys after 24 hours of perfusion. After autotransplantation, pigs that received H2S-treated kidneys showed significantly lower serum creatinine on days 1 and 7 after transplantation. Rat and pig kidneys treated with H2S also showed more protective gene expression profiles than controls. CONCLUSION: Our findings support the potential use of H2S-supplemented UW solution during cold storage as a novel and practical means to improve DCD graft survival and function.


Assuntos
Sulfeto de Hidrogênio , Transplante de Rim , Soluções para Preservação de Órgãos , Traumatismo por Reperfusão , Adenosina , Alopurinol , Animais , Morte , Glutationa , Humanos , Sulfeto de Hidrogênio/farmacologia , Insulina , Rim/irrigação sanguínea , Camundongos , Soluções para Preservação de Órgãos/farmacologia , Rafinose , Ratos , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Suínos
6.
Eur J Immunol ; 48(8): 1319-1328, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29745988

RESUMO

Interferon regulatory factor 4 (IRF4) has critical roles in immune cell differentiation and function and is indispensable for clonal expansion and effector function in T cells. Here, we demonstrate that the AKT pathway is impaired in murine CD8+ T cells lacking IRF4. The expression of phosphatase and tensin homolog (PTEN), a negative regulator of the AKT pathway, was elevated in Irf4-/- CD8+ T cells. Inhibition of PTEN partially rescued downstream events, suggesting that PTEN constitutes a checkpoint in the IRF4-mediated regulation of cell signaling. Despite the clonal expansion defect, in the absence of IRF4, memory-like CD8+ T cells could be generated and maintained, although unable to expand in recall responses. The homeostatic proliferation of naïve Irf4-/- CD8+ T cells was impaired, whereas their number eventually reached a level similar to that of wild-type CD8+ T cells. Conversely, memory-like Irf4-/- CD8+ T cells underwent homeostatic proliferation in a manner similar to that of wild-type memory CD8+ T cells. These results suggest that IRF4 regulates the clonal expansion of CD8+ T cells at least in part via the AKT signaling pathway. Moreover, IRF4 regulates the homeostatic proliferation of naïve CD8+ T cells, whereas the maintenance of memory CD8+ T cells is IRF4-independent.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Fatores Reguladores de Interferon/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Fatores Reguladores de Interferon/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Transdução de Sinais/imunologia
7.
Curr Opin Organ Transplant ; 24(4): 385-390, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145156

RESUMO

PURPOSE OF REVIEW: The current review aims to examine recent evidence about improvements, therapeutics and novel approaches for renal graft preservation along with presenting a pragmatic outlook on their potential for clinical translation. RECENT FINDINGS: Modifying established cold preservation methods (4 °C) with oxygenation, gene therapies and gasotransmitters such as hydrogen sulfide has been shown to improve renal graft outcomes with minimum modifications to current protocols. These strategies have also shown promise in the context of normothermic preservation (34-37 °C), which circumvents the damage caused by cold preservation. Although normothermic machine perfusion (NMP) is being evaluated in clinical trials, it is limited by high cost, the use of blood and the lack of standardized protocols. Recent studies confirmed that preservation at subnormothermic temperatures (∼20 °C) is effective with approved preservation solutions and, in conjunction with exogenous hydrogen sulfide therapy, this approach may expedite a static preservation alternative to NMP. SUMMARY: Progress has been made in investigating improvements and alternatives to cold preservation. Promising therapeutic strategies have also been studied in the context of cold, subnormothermic and normothermic preservation. Further research is needed to optimize clinical renal graft preservation.


Assuntos
Terapia Genética/métodos , Transplante de Rim/métodos , Preservação de Órgãos/métodos , Humanos
8.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29426043

RESUMO

CD8+ T cells are the major effector cells that protect against malaria liver-stage infection, forming clusters around Plasmodium-infected hepatocytes and eliminating parasites after a prolonged interaction with these hepatocytes. We aimed to investigate the roles of specific and nonspecific CD8+ T cells in cluster formation and protective immunity. To this end, we used Plasmodium berghei ANKA expressing ovalbumin as well as CD8+ T cells from transgenic mice expressing a T cell receptor specific for ovalbumin (OT-I) and CD8+ T cells specific for an unrelated antigen, respectively. While antigen-specific CD8+ T cells were essential for cluster formation, both antigen-specific and nonspecific CD8+ T cells joined the clusters. However, nonspecific CD8+ T cells did not significantly contribute to protective immunity. In the livers of infected mice, specific CD8+ T cells expressed high levels of CD25, compatible with a local, activated effector phenotype. In vivo imaging of the liver revealed that specific CD8+ T cells interact with CD11c+ cells around infected hepatocytes. The depletion of CD11c+ cells virtually eliminated the clusters in the liver, leading to a significant decrease in protection. These experiments reveal an essential role of hepatic CD11c+ dendritic cells and presumably macrophages in the formation of CD8+ T cell clusters around Plasmodium-infected hepatocytes. Once cluster formation is triggered by parasite-specific CD8+ T cells, specific and unrelated activated CD8+ T cells join the clusters in a chemokine- and dendritic cell-dependent manner. Nonspecific CD8+ T cells seem to play a limited role in protective immunity against Plasmodium parasites.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Hepatopatias Parasitárias/imunologia , Macrófagos/imunologia , Malária/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Hepatócitos/imunologia , Hepatopatias Parasitárias/diagnóstico , Hepatopatias Parasitárias/parasitologia , Ativação Linfocitária/imunologia , Macrófagos/metabolismo , Malária/diagnóstico , Malária/parasitologia , Camundongos , Camundongos Transgênicos
9.
Nitric Oxide ; 81: 57-66, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30393129

RESUMO

Renal transplantation is the preferred treatment for end-stage renal disease. Currently, there is a large gap between the supply and demand for transplantable kidneys. The use of sub-optimal grafts obtained via donation after cardiac death (DCD) is on the rise. While static cold storage (SCS) in University of Wisconsin (UW) solution on ice (4°C) is the clinical standard of care for renal graft preservation, cold storage has been associated with negative graft outcomes. The alternative, normothermic machine perfusion, involves mechanical perfusion of the organ at physiological or normothermic temperature (37°C) and this technique is expensive, complicated and globally inaccessible. As such, simpler alternatives are of interest. Preliminary results revealed that UW solution is more protective at 21°C than 37°C and subnormothermic preservation is of interest because it may facilitate the use of existing solutions while preventing cold injury. We have previously shown that SCS in UW solution supplemented with mitochondria-targeted H2S donor AP39 improves renal graft outcomes. As such, it was hypothesized subnormothermic preservation at 21°C with AP39 will also improve renal outcomes. Using an in vitro model of hypoxia and reoxygenation, we found that treating porcine tubular epithelial cells with UW+5 µM AP39 during 18 h hypoxia at 21°C significantly increased renal tubular epithelial cell viability after 24 h of reoxygenation at 37°C compared to UW alone. Also, AP39-supplemented UW solution was significantly more cytoprotective during hypoxia at 21°C than hypoxia at 37°C, regardless of AP39 concentration. Using an ex vivo DCD organ preservation model, we found that DCD porcine kidneys stored for 24 h in UW+200 nM AP39 at 21°C showed significantly lower tissue necrosis than DCD porcine kidneys preserved using SCS in UW solution, the clinical standard of care. Overall, our findings suggest that exogenous H2S supplementation improves the viability of the gold standard organ preservation solution, UW solution, for subnormothermic preservation at 21°C.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Rim/citologia , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/prevenção & controle , Adenosina/farmacologia , Alopurinol/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Células Epiteliais/efeitos dos fármacos , Glutationa/farmacologia , Insulina/farmacologia , Transplante de Rim , Compostos Organofosforados/farmacologia , Perfusão , Rafinose/farmacologia , Suínos , Temperatura , Tionas/farmacologia
10.
Microbiol Immunol ; 60(2): 121-31, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26696540

RESUMO

CD4(+) T cells play critical roles in protection against the blood stage of malarial infection; however, their uncontrolled activation can be harmful to the host. In this study, in which rodent models of Plasmodium parasites were used, the expression of inhibitory receptors on activated CD4(+) T cells and their cytokine production was compared with their expression in a bacterial and another protozoan infection. CD4(+) T cells from mice infected with P. yoelii 17XL, P yoelii 17XNL, P. chabaudi, P. vinckei and P. berghei expressed the inhibitory receptors, PD-1 and LAG-3, as early as 6 days after infection, whereas those from either Listeria monocytogenes- or Leishmania major-infected mice did not. In response to T-cell receptor stimulation, CD4(+) T cells from mice infected with all the pathogens under study produced high concentrations of IFN-γ. IL-2 production was reduced in mice infected with Plasmodium species, but not in those infected with Listeria or Leishmania. In vitro blockade of the interaction between PD-1 and its ligands resulted in increased IFN-γ production in response to Plasmodium antigens, implying that PD-1 expressed on activated CD4(+) T cells actively inhibits T cell immune responses. Studies using Myd88(-/-), Trif(-/-) and Irf3(-/-) mice showed that induction of these CD4(+) T cells and their ability to produce cytokines is largely independent of TLR signaling. These studies suggest that expression of the inhibitory receptors PD-1 and LAG-3 on CD4(+) T cells and their reduced IL-2 production are common characteristic features of Plasmodium infection.


Assuntos
Antígenos CD/biossíntese , Linfócitos T CD4-Positivos/imunologia , Citocinas/biossíntese , Malária/imunologia , Plasmodium/imunologia , Receptor de Morte Celular Programada 1/biossíntese , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD/imunologia , Citocinas/imunologia , Interleucina-2/biossíntese , Interleucina-2/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Ativação Linfocitária , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
11.
J Immunol ; 192(5): 2271-9, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24489086

RESUMO

IRF4 is a transcription factor from the IRF factor family that plays pivotal roles in the differentiation and function of T and B lymphocytes. Although IRF4 is also expressed in dendritic cells (DCs) and macrophages, its roles in these cells in vivo are not clearly understood. In this study, conditional knockout mice that lack IRF4 in DCs or macrophages were generated and infected with Leishmania major. Mice lacking DC expression of IRF4 showed reduced footpad swelling compared with C57BL/6 mice, whereas those lacking IRF4 in macrophages did not. Mice with IRF4-deficient DCs also showed reduced parasite burden, and their CD4(+) T cells produced higher levels of IFN-γ in response to L. major Ag. In the draining lymph nodes, the proportion of activated CD4(+) T cells in these mice was similar to that in the control, but the proportion of IFN-γ-producing cells was increased, suggesting a Th1 bias in the immune response. Moreover, the numbers of migrating Langerhans cells and other migratory DCs in the draining lymph nodes were reduced both before and postinfection in mice with IRF4 defects in DCs, but higher levels of IL-12 were observed in IRF4-deficient DCs. These results imply that IRF4 expression in DCs inhibits their ability to produce IL-12 while promoting their migratory behavior, thus regulating CD4(+) T cell responses against local infection with L. major.


Assuntos
Fatores Reguladores de Interferon/imunologia , Interleucina-12/imunologia , Células de Langerhans/imunologia , Leishmania major/metabolismo , Leishmaniose Cutânea/imunologia , Células Th1/imunologia , Animais , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Fatores Reguladores de Interferon/genética , Interferon gama/imunologia , Interleucina-12/genética , Células de Langerhans/patologia , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Células Th1/patologia
12.
Diabetologia ; 58(11): 2606-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26271342

RESUMO

AIMS/HYPOTHESIS: Interferon regulatory factor (IRF)4 plays a critical role in lymphoid development and the regulation of immune responses. Genetic deletion of IRF4 has been shown to suppress autoimmune disease in several mouse models, but its role in autoimmune diabetes in NOD mice remains unknown. METHODS: To address the role of IRF4 in the pathogenesis of autoimmune diabetes in NOD mice, we generated IRF4-knockout NOD mice and investigated the impact of the genetic deletion of IRF4 on diabetes, insulitis and insulin autoantibody; the effector function of T cells in vivo and in vitro; and the proportion of dendritic cell subsets. RESULTS: Heterozygous IRF4-deficient NOD mice maintained the number and phenotype of T cells at levels similar to NOD mice. However, diabetes and autoantibody production were completely suppressed in both heterozygous and homozygous IRF4-deficient NOD mice. The level of insulitis was strongly suppressed in both heterozygous and homozygous IRF4-deficient mice, with minimal insulitis observed in heterozygous mice. An adoptive transfer study revealed that IRF4 deficiency conferred disease resistance in a gene-dose-dependent manner in recipient NOD/severe combined immunodeficiency mice. Furthermore, the proportion of migratory dendritic cells in lymph nodes was reduced in heterozygous and homozygous IRF4-deficient NOD mice in an IRF4 dose-dependent manner. These results suggest that the levels of IRF4 in T cells and dendritic cells are important for the pathogenesis of diabetes in NOD mice. CONCLUSIONS/INTERPRETATION: Haploinsufficiency of IRF4 halted disease development in NOD mice. Our findings suggest that an IRF4-targeted strategy might be useful for modulating autoimmunity in type 1 diabetes.


Assuntos
Autoanticorpos/sangue , Diabetes Mellitus Tipo 1/genética , Haploinsuficiência , Insulina/imunologia , Fatores Reguladores de Interferon/genética , Animais , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/imunologia , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Fatores de Proteção , Linfócitos T/imunologia
13.
J Surg Case Rep ; 2024(6): rjae431, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38933828

RESUMO

Chest wall sarcomas are reported to be infrequent among thoracic tumors. The spindle cell subtype makes up a small percentage of this group. These tumors can be asymptomatic or cause symptoms of chest pain and shortness of breath due to the mass effect, which can lead to a delay in diagnosis. A 10-year-old female with a persistent cough, shortness of breath on exertion, and left-sided chest pain presented to the ED. Imaging indicated a chest wall mass filling the left hemithorax with a rightward mediastinal shift. During surgical resection, two tumors were removed, with resection of parts of the latissimus dorsi and serratus anterior. A diagnosis of MGA:NUTM1 spindle cell sarcoma was made pathologically. The patient was successfully treated with surgery and adjuvant chemoradiotherapy. We hope to add to our academic knowledge by presenting the presentation and treatment of SCS in a pediatric patient.

14.
Ultrason Sonochem ; 106: 106882, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669798

RESUMO

Present study investigates the effects of probe size geometry on thermodynamic kinetics, rheology, and microstructure of wheat and tapioca starch. Ultrasound treatment using different probe diameters (20 mm and 100 mm) significantly influenced the gelatinization process. Results showed reduced enthalpy (ΔH) and Gibbs energy (ΔG), indicating enhanced gelatinization efficiency. According to the results, using a 20 mm and 100 mm probe leads to a reduction of 52.7 % and 68.6 % in reaction enthalpy for wheat starch compared to native starch, respectively. Microstructure analysis revealed structural changes, with ultrasound treatment leading to granular fractures and a sheet-like structure with air bubbles. The rheological behavior of the starches is found to exhibit shear thinning behavior, with the Casson model providing the best fit for the experimental data. Moreover, rheology modeling using Herschel-Bulkley and power law models showed increased viscosity and shear stress in larger probes. Numerical simulation data demonstrated that probe size influenced ultrasonic pressure, sound pressure level, and thermal power dissipation density, affecting fluid motion and velocity field components. Moreover, the maximum dissipated power decreases from 8.43 to 0.655 mW/m3 with an increase in probe diameter from 20 to 100 mm. The average yield shear stress values are calculated as 3.36 and 3.14 for wheat and tapioca starches, respectively. The larger probe diameter leads to greater entropy increases, with tapioca starch showing a 4.72 % increase and wheat starch a 4.97 % increase, compared to 2.56 % and 3.11 %, respectively, with the smaller probe. Additionally, the Keller-Miksis model provided insights into bubble dynamics, revealing increased pressure and temperature with higher pressure amplitudes.

15.
Nanoscale ; 16(2): 564-579, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38099744

RESUMO

The thermal instability of silver nanowires (AgNWs) leads to a significant increase of the electrical resistance of AgNW networks. A better understanding of the relationship between the structural and electrical properties of AgNW networks is primordial for their efficient integration as transparent electrodes (TEs) for next-generation flexible optoelectronics. Herein, we investigate the in situ evolution of the main crystallographic parameters (i.e. integrated intensity, interplanar spacing and peak broadening) of two Ag-specific Bragg peaks, (111) and (200), during a thermal ramp up to 400 °C through in situ X-ray diffraction (XRD) measurements, coupled with in situ electrical resistance measurements on the same AgNW network. First, we assign the (111) and (200) peaks of χ-scans to each five crystallites within AgNWs using a rotation matrix model. Then, we show that the thermal transition of bare AgNW networks occurs within a temperature range of about 25 °C for the electrical properties, while the structural transition spans over 200 °C. The effect of a protective tin oxide coating (SnO2) on AgNW networks is also investigated through this original in situ coupling approach. For SnO2-coated AgNW networks, the key XRD signatures from AgNWs remain constant, since the SnO2 coating prevents Ag atomic surface diffusion, and thus morphological instability (i.e. spheroidization). Moreover, the SnO2 coating does not affect the strain of both (111) and (200) planes. The thermal expansion for bare and SnO2-coated AgNW networks appears very similar to the thermal expansion of bulk Ag. Our findings provide insights into the underlying failure mechanisms of AgNW networks subjected to thermal stress, helping researchers to develop more robust and durable TEs based on metallic nanowire networks.

16.
Foods ; 12(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685083

RESUMO

This study examined the effect of beef fermentation with Lactiplantibacillus paraplantarum (L) PTCC 1965, Lactiplantibacillus (L) plantarum subsp. plantarum PTCC 1745, and Lactiplantibacillus (L) pentosus PTCC 1872 bacteria on the growth of pathogenic bacteria, including Salmonella (S) Typhi PTCC 1609 and Staphylococcus (S) aureus PTCC 1826. The growth of lactic acid bacteria (LAB) and the effect of fermentation on pathogenic bacteria were studied using Weibull: biphasic linear and competitive models. The results showed that the rate of pH reduction was lower in the early stages and increased as the microbial population grew. The α parameter was lower for L. plantarum subsp. plantarum compared to L. paraplantarum and L. pentosus. The comparison of the α parameter for bacterial growth and pH data showed that the time interval required to initiate the rapid growth phase of the bacteria was much shorter than that for the rapid pH reduction phase. The pH value had a 50% greater effect on the inactivation of S. Typhi when compared to the samples containing L. plantarum subsp. plantarum and L. pentosus. The same parameter was reported to be 72% for the inactivation of St. aureus. In general, during the fermentation process, LAB strains caused a decrease in pH, and as a result, reduced the growth of pathogens, which improves consumer health and increases the food safety of fermented meat.

17.
Mol Genet Genomic Med ; 11(6): e2159, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866531

RESUMO

BACKGROUND: Giant axonal neuropathy (GAN) is a progressive childhood hereditary polyneuropathy that affects both the peripheral and central nervous systems. Disease-causing variants in the gigaxonin gene (GAN) cause autosomal recessive giant axonal neuropathy. Facial weakness, nystagmus, scoliosis, kinky or curly hair, pyramidal and cerebellar signs, and sensory and motor axonal neuropathy are the main symptoms of this disorder. Here, we report two novel variants in the GAN gene from two unrelated Iranian families. METHODS: Clinical and imaging data of patients were recorded and evaluated, retrospectively. Whole-exome sequencing (WES) was undertaken in order to detect disease-causing variants in participants. Confirmation of a causative variant in all three patients and their parents was carried out using Sanger sequencing and segregation analysis. In addition, for comparing to our cases, we reviewed all relevant clinical data of previously published cases of GAN between the years 2013-2020. RESULTS: Three patients from two unrelated families were included. Using WES, we identified a novel nonsense variant [NM_022041.3:c.1162del (p.Leu388Ter)], in a 7-year-old boy of family 1, and a likely pathogenic missense variant [NM_022041.3:c.370T>A (p.Phe124Ile)], in two affected siblings of the family 2. Clinical examination revealed typical features of GAN-1 in all three patients, including walking difficulties, ataxic gait, kinky hair, sensory-motor polyneuropathy, and nonspecific neuroimaging abnormalities. Review of 63 previously reported cases of GAN indicated unique kinky hair, gait problem, hyporeflexia/areflexia, and sensory impairment were the most commonly reported clinical features. CONCLUSIONS: One homozygous nonsense variant and one homozygous missense variant in the GAN gene were discovered for the first time in two unrelated Iranian families that expand the mutation spectrum of GAN. Imaging findings are nonspecific, but the electrophysiological study in addition to history is helpful to achieve the diagnosis. The molecular test confirms the diagnosis.


Assuntos
Neuropatia Axonal Gigante , Doenças do Sistema Nervoso Periférico , Masculino , Humanos , Criança , Neuropatia Axonal Gigante/diagnóstico , Neuropatia Axonal Gigante/genética , Neuropatia Axonal Gigante/patologia , Irã (Geográfico) , Estudos Retrospectivos , Proteínas do Citoesqueleto/genética , Mutação , Doenças do Sistema Nervoso Periférico/genética
18.
STAR Protoc ; 3(2): 101233, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35313712

RESUMO

The mechanical properties of polydimethylsiloxane hydrogels can be tuned to mimic physiological tensions, an underappreciated environmental parameter in immunology studies. We describe a workflow to prepare PDMS-coated tissue culture plates with biologically relevant substrate stiffness, and the use of these hydrogel plates to condition isolated primary splenic CD11c+ dendritic cells (DC). Finally, we suggest downstream applications to study the impact of substrate stiffness on DC function and metabolism. The protocol could be adapted to study other mechanosensitive immune cell subsets. For complete details on the use and execution of this protocol, please refer to Chakraborty et al. (2021).


Assuntos
Fenômenos Fisiológicos Celulares , Hidrogéis , Células Dendríticas
19.
Biomed Pharmacother ; 145: 112435, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798469

RESUMO

INTRODUCTION: Cold ischemia-reperfusion injury (IRI) is an inevitable event that increases post-transplant complications. We have previously demonstrated that supplementation of University of Wisconsin (UW) solution with non-FDA-approved hydrogen sulfide (H2S) donor molecules minimizes cold IRI and improves renal graft function after transplantation. The present study investigates whether an FDA-approved H2S donor molecule, sodium thiosulfate (STS), will have the same or superior effect in a clinically relevant rat model of syngeneic orthotopic kidney transplantation. METHOD: Thirty Lewis rats underwent bilateral nephrectomy followed by syngeneic orthotopic transplantation of the left kidney after 24-hour preservation in either UW or UW+STS solution at 4 °C. Rats were monitored to post-transplant day 14 and sacrificed to assess renal function (urine output, serum creatinine and blood urea nitrogen). Kidney sections were stained with H&E, TUNEL, CD68, and myeloperoxidase (MPO) to detect acute tubular necrosis (ATN), apoptosis, macrophage infiltration, and neutrophil infiltration. RESULT: UW+STS grafts showed significantly improved graft function immediately after transplantation, with improved recipient survival compared to UW grafts (p < 0.05). Histopathological examination revealed significantly reduced ATN, apoptosis, macrophage and neutrophil infiltration and downregulation of pro-inflammatory and pro-apoptotic genes in UW+STS grafts compared to UW grafts (p < 0.05). CONCLUSION: We show for the first time that preservation of renal grafts in STS-supplemented UW solution protects against prolonged cold IRI by suppressing apoptotic and inflammatory pathways, and thereby improving graft function and prolonging recipient survival. This could represent a novel clinically applicable therapeutic strategy to minimize the detrimental clinical outcome of prolonged cold IRI in kidney transplantation.


Assuntos
Transplante de Rim/métodos , Soluções para Preservação de Órgãos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Tiossulfatos/farmacologia , Adenosina/administração & dosagem , Adenosina/farmacologia , Alopurinol/administração & dosagem , Alopurinol/farmacologia , Animais , Apoptose/fisiologia , Nitrogênio da Ureia Sanguínea , Isquemia Fria/efeitos adversos , Creatinina/sangue , Glutationa/administração & dosagem , Glutationa/farmacologia , Insulina/administração & dosagem , Insulina/farmacologia , Testes de Função Renal , Masculino , Soluções para Preservação de Órgãos/administração & dosagem , Rafinose/administração & dosagem , Rafinose/farmacologia , Ratos , Ratos Endogâmicos Lew , Taxa de Sobrevida , Tiossulfatos/administração & dosagem
20.
Dalton Trans ; 51(24): 9278-9290, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670303

RESUMO

Due to its unique optical, electrical, and chemical properties, tin dioxide (SnO2) thin films attract enormous attention as a potential material for gas sensors, catalysis, low-emissivity coatings for smart windows, transparent electrodes for low-cost solar cells, etc. However, the low-cost and high-throughput fabrication of SnO2 thin films without producing corrosive or toxic by-products remains challenging. One appealing deposition technique, particularly well-adapted to films presenting nanometric thickness is atomic layer deposition (ALD). In this work, several metalorganic tin-based complexes, namely, tin(IV) tert-butoxide, bis[bis(trimethylsilyl)amino] tin(II), dibutyltin diacetate, tin(II) acetylacetonate, tetrakis(dimethylamino) tin(IV), and dibutyltin bis(acetylacetonate), were explored thanks to DFT calculations. Our theoretical calculations suggest that the three last precursors are very appealing for ALD of SnO2 thin films. The potential use of these precursors for atmospheric-pressure spatial atomic layer deposition (AP-SALD) is also discussed. For the first time, we experimentally demonstrate the AP-SALD growth of SnO2 thin films using tin(II) acetylacetonate (Sn(acac)2) and water. We observe that Sn(acac)2 exhibits efficient ALD activity with a relatively large ALD temperature window (140-200 °C), resulting in a growth rate of 0.85 ± 0.03 Å per cyc. XPS analyses show a single Sn 3d5/2 characteristic peak for Sn4+ at 486.8 ± 0.3 eV, indicating that a pure SnO2 phase is obtained within the ALD temperature window. The as-deposited SnO2 thin films are in all cases amorphous, and film conductivity increases with the deposition temperature. Hall effect measurements confirm the n-type nature of SnO2 with a free electron density of about 8 × 1019 cm-3, electron mobility up to 11.2 cm2 V-1 s-1, and resistivity of 7 × 10-3 Ω cm for samples deposited at 270 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA