Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tissue Cell ; 73: 101664, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678531

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are of interest as a new vector for the delivery of therapeutic agents into the tumor microenvironment. Cell-free EV-based therapy has a number of advantages over cell-based therapy, since the use of EVs allows avoiding potential undesirable transformation associated with MSCs. MSC-derived EVs can transfer natural proteins with immunomodulatory or antitumor properties. The aim of this study was to produce vesicles from mesenchymal stem cells with simultaneous overexpression of TRAIL, PTEN and IFN-ß1 and analyze its antitumor and immunomodulatory properties. In this work, a stable line of human adipose tissue-derived mesenchymal stem cells (hADSCs) with simultaneous overexpression of TRAIL, PTEN and IFN-ß1 was produced. To obtain this cell line hADSCs were genetically modified with a genetic multicistronic cassette encoding TRAIL, PTEN, and IFN-ß1 genes separated with a self-cleaving P2A peptide nucleotide sequence. Membrane vesicles (CIMVs) were obtained from genetically modified hADSCs using cytochalasin B treatment. Antitumor and immunomodulatory properties of the CIMVs were analyzed in vitro. It was shown that CIMVs isolated from genetically modified hADSCs overexpressing TRAIL, PTEN and IFN-ß1 genes are able to activate human immune cells and induce apoptosis in various types of carcinomas in vitro. Thus, the immunomodulatory and antitumor properties of CIMVs were shown. However, further studies on animal models in vivo are required.


Assuntos
Citocalasina B/farmacologia , Vesículas Extracelulares/metabolismo , Interferon beta/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , PTEN Fosfo-Hidrolase/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Vesículas Extracelulares/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunomodulação/efeitos dos fármacos , Imunofenotipagem , Interferon beta/genética , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/genética
2.
Bioengineering (Basel) ; 7(2)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560387

RESUMO

High-dose recombinant interleukin 2 (IL2) therapy has been shown to be successful in renal cell carcinoma and metastatic melanoma. However, systemic administration of high doses of IL2 can be toxic, causing capillary leakage syndrome and stimulating pro-tumor immune response. One of the strategies to reduce the systemic toxicity of IL2 is the use of mesenchymal stem cells (MSCs) as a vehicle for the targeted delivery of IL2. Human adipose tissue-derived MSCs were transduced with lentivirus encoding IL2 (hADSCs-IL2) or blue fluorescent protein (BFP) (hADSCs-BFP). The proliferation, immunophenotype, cytokine profile and ultrastructure of hADSCs-IL2 and hADSCs-BFP were determined. The effect of hADSCs on activation of peripheral blood mononuclear cells (PBMCs) and proliferation and viability of SH-SY5Y neuroblastoma cells after co-culture with native hADSCs, hADSCs-BFP or hADSCs-IL2 on plastic and Matrigel was evaluated. Ultrastructure and cytokine production by hADSCs-IL2 showed modest changes in comparison with hADSCs and hADSCs-BFP. Conditioned medium from hADSC-IL2 affected tumor cell proliferation, increasing the proliferation of SH-SY5Y cells and also increasing the number of late-activated T-cells, natural killer (NK) cells, NKT-cells and activated T-killers. Conversely, hADSC-IL2 co-culture led to a decrease in SH-SY5Y proliferation on plastic and Matrigel. These data show that hADSCs-IL2 can reduce SH-SY5Y proliferation and activate PBMCs in vitro. However, IL2-mediated therapeutic effects of hADSCs could be offset by the increased expression of pro-oncogenes, as well as the natural ability of hADSCs to promote the progression of some tumors.

3.
Front Pharmacol ; 9: 343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692732

RESUMO

The use of stem and progenitor cells to restore damaged organs and tissues, in particular, the central nervous system, is currently considered a most promising therapy in regenerative medicine. At the same time, another approach aimed at stimulating regeneration with the use of stem cells encapsulated into a biopolymer matrix and capable of creating a specific microenvironment for the implanted cells similar to the natural extracellular matrix is under active development. Here, we study effects of the application of adipose-derived mesenchymal stem cells (AD-MSCs) combined with a fibrin matrix on post-traumatic reactions in the spinal cord in rats. The AD-MSC application is found to exert a positive impact on the functional and structural recovery after spinal cord injury (SCI) that has been confirmed by the results of behavioral/electrophysiological and morphometric studies demonstrating reduced area of abnormal cavities and enhanced tissue retention in the site of injury. Immunohistochemical and real-time PCR analyses provide evidence that AD-MSC application decreases the GFAP expression in the area of SCI that might indicate the reduction of astroglial activation. Our results also demonstrate that AD-MSC application contributes to marked upregulation of PDGFßR and HSPA1b mRNA expression and decrease of Iba1 expression at the site of the central canal. Thus, the application of AD-MSCs combined with fibrin matrix at the site of SCI during the subacute period can stimulate important mechanisms of nervous tissue regeneration and should be further developed for clinical applications.

4.
Front Cell Neurosci ; 12: 507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30631265

RESUMO

Microglial cells are known as important mediators of inflammation and immune response in the central nervous system (CNS). However, a neuroprotective role of these cells in post-traumatic processes should not be overlooked. Microglial cells are the first to respond to CNS injury and are further involved in all critical events of pathogenesis. When activated microglia clear the cellular debris and release anti- and proinflammatory cytokines and chemokines, nitric oxide, neurotrophins, and antioxidants capable of producing both neurotoxic and neuroprotective effects. The aim of this study was to determine to what extent the phagocytic activity of microglia in an acute period of spinal cord injury (SCI) in rats can effect the post-traumatic processes. For this purpose we implanted genetically modified Ad5-EGFP or Ad5-GDNF microglial cells into the area of acute SCI. Our experiments demonstrate that the area of intact tissue was lower in the group transplanted with Ad5-GDNF-transduced microglial cells with reduced phagocytic activity than that in the group of animals transplanted with Ad5-EGFP-transduced microglia cells which did not affect the cell activity. At the same time, there was no significant difference in the functional recovery index between these groups. Thus, the increased number of microglia cells with good phagocytic activity in the area of acute SCI may contribute to the improved nervous tissue integrity without a significant effect on the functional recovery within 30 days after injury.

5.
Front Neurol ; 8: 581, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163344

RESUMO

Our study of the changes in cytokine profile in blood serum and in the spinal cord after traumatic spinal cord injury (SCI) has shown that an inflammatory reaction and immunological response are not limited to the CNS, but widespread. This fact was confirmed by changes detected in a cytokine profile in blood serum samples [MIP-1α, interleukin 1 (IL-1) α, IL-2, IL-5, IL-1ß, MCP-1, RANTES]. There were also changes in the levels of MIP-1α, IL-1α, IL-2, IL-5, IL-18, GM-colony-stimulating factor, IL-17α, IFN-γ, IL-10, IL-13, MCP-1, and GRO KC CINC-1 in samples of the rat injured spinal cord. The results underscore the complex cytokine network imbalance exhibited after SCI and show significant changes in the concentrations of 14 cytokines/chemokines with different inflammatory and immunological activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA