Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Virol Plus ; 3(1): 100139, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36683611

RESUMO

Objectives: Determining an accurate estimate of SARS-CoV-2 seroprevalence has been challenging in African countries where malaria and other pathogens are endemic. We compared the performance of one single-antigen assay and three multi-antigen SARS-CoV-2 IgG assays in a Nigerian population endemic for malaria. Methods: De-identified plasma specimens from SARS-CoV-2 RT-PCR positive, dried blood spot (DBS) SARS-CoV-2 RT-PCR positive, and pre-pandemic negatives were used to evaluate the performance of the four SARS-CoV-2 assays (Tetracore, SARS2MBA, RightSign, xMAP). Results: Results showed higher sensitivity with the multi-antigen (81% (Tetracore), 96% (SARS2MBA), 85% (xMAP)) versus the single-antigen (RightSign (64%)) SARS-CoV-2 assay. The overall specificities were 98% (Tetracore), 100% (SARS2MBA and RightSign), and 99% (xMAP). When stratified based on <15 days to ≥15 days post-RT-PCR confirmation, the sensitivities increased from 75% to 88.2% for Tetracore; from 93% to 100% for the SARS2MBA; from 58% to 73% for RightSign; and from 83% to 88% for xMAP. With DBS, there was no positive increase after 15-28 days for the three assays (Tetracore, SARS2MBA, and xMAP). Conclusion: Multi-antigen assays performed well in Nigeria, even with samples with known malaria reactivity, and might provide more accurate measures of COVID-19 seroprevalence and vaccine efficacy.

2.
Am J Trop Med Hyg ; 107(2): 260-267, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35895418

RESUMO

Serosurveillance can provide estimates of population-level exposure to infectious pathogens and has been used extensively during the COVID-19 pandemic. Simultaneous, serological testing for multiple pathogens can be done using bead-based immunoassays to add value to disease-specific serosurveys. We conducted a validation of four SARS-CoV-2 antigens-full-length spike protein, two receptor binding domain proteins, and the nucleocapsid protein-on our existing multiplex bead assay (MBA) for enteric diseases, malaria, and vaccine preventable diseases. After determining the optimal conditions for coupling the antigens to microsphere beads, the sensitivity and specificity of the assay were determined on two instruments (Luminex-200 and MAGPIX) when testing singly (monoplex) versus combined (multiplex). Sensitivity was assessed using plasma from 87 real-time reverse transcription polymerase chain reaction (rRT-PCR) positive persons collected in March-May of 2020 and ranged from 94.3% to 96.6% for the different testing conditions. Specificity was assessed using 98 plasma specimens collected prior to December 2019 and plasma from 19 rRT-PCR negative persons and ranged from 97.4% to 100%. The positive percent agreement was 93.8% to 97.9% using 48 specimens collected > 21 days post-symptom onset, while the negative percent agreement was ≥ 99% for all antigens. Test performance was similar using monoplex or multiplex testing. Integrating SARS-CoV-2 serology with other diseases of public health interest could add significant value to public health programs that have suffered severe programmatic setbacks during the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias , Sensibilidade e Especificidade , Imunoensaio
3.
PLoS One ; 17(4): e0266184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35363818

RESUMO

OBJECTIVE: There is a need for reliable serological assays to determine accurate estimates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence. Most single target antigen assays have shown some limitations in Africa. To assess the performance of a multi-antigen assay, we evaluated a commercially available SARS-CoV-2 Multi-Antigen IgG assay for human coronavirus disease 2019 (COVID-19) in Nigeria. METHODS: Validation of the xMAP SARS-CoV-2 Multi-Antigen IgG assay was carried out using well-characterized SARS-CoV-2 reverse transcription polymerase chain reactive positive (97) and pre-COVID-19 pandemic (86) plasma panels. Cross-reactivity was assessed using pre-COVID-19 pandemic plasma specimens (213) from the 2018 Nigeria HIV/AIDS Indicator and Impact Survey (NAIIS). RESULTS: The overall sensitivity of the xMAP SARS-CoV-2 Multi-Antigen IgG assay was 75.3% [95% CI: 65.8%- 82.8%] and specificity was 99.0% [95% CI: 96.8%- 99.7%]. The sensitivity estimate increased to 83.3% [95% CI: 70.4%- 91.3%] for specimens >14 days post-confirmation of diagnosis. However, using the NAIIS pre-pandemic specimens, the false positivity rate was 1.4% (3/213). CONCLUSIONS: Our results showed overall lower sensitivity and a comparable specificity with the manufacturer's validation. There appears to be less cross-reactivity with NAIIS pre-pandemic COVID-19 specimens using the xMAP SARS-CoV-2 Multi-Antigen IgG assay. In-country SARS-CoV-2 serology assay validation can help guide the best choice of assays in Africa.


Assuntos
COVID-19 , Pandemias , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Imunoglobulina G , Nigéria/epidemiologia , SARS-CoV-2 , Sensibilidade e Especificidade , Estudos Soroepidemiológicos
4.
Sci Rep ; 11(1): 13248, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168264

RESUMO

Multiplex assays for malaria antigen detection can gather data from large sample sets, but considerations for the consistency and quality assurance (QA) of mass testing lack evaluation. We present a QA framework for a study occurring November 2019 to March 2020 involving 504 assay plates detecting four Plasmodium antigens: pan-Plasmodium aldolase and lactate dehydrogenase (LDH), histidine-rich protein 2 (HRP2), P. vivax LDH (PvLDH). Controls on each plate included buffer blank, antigen negative blood, and 4-point positive dilution curve. The blank and negative blood provided consistently low signal for all targets except for pAldolase, which showed variability. Positive curve signals decreased throughout the 5-month study duration but retained a coefficient of variation (CV) of < 5%, with the exception of HRP2 in month 5 (CV of 11%). Regression fittings for inter-plate control signals provided mean and standard deviations (SDs), and of 504 assay plates, 6 (1.2%) violated the acceptable deviation limits and were repeated. For the 40,272 human blood samples assayed in this study, of 161,088 potential data points (each sample × 4 antigens), 160,641 (99.7%) successfully passed quality checks. The QA framework presented here can be utilized to ensure quality of laboratory antigen detection for large sample sets.


Assuntos
Antígenos de Protozoários/imunologia , Malária/imunologia , Plasmodium/imunologia , Adolescente , Antígenos de Protozoários/sangue , Criança , Frutose-Bifosfato Aldolase/imunologia , Humanos , L-Lactato Desidrogenase/imunologia , Nigéria , Proteínas de Protozoários/imunologia , Controle de Qualidade , Testes Sorológicos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA