Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Sci Biotechnol ; 15(1): 75, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831417

RESUMO

Due to high environmental temperatures and climate change, heat stress is a severe concern for poultry health and production, increasing the propensity for food insecurity. With climate change causing higher temperatures and erratic weather patterns in recent years, poultry are increasingly vulnerable to this environmental stressor. To mitigate heat stress, nutritional, genetic, and managerial strategies have been implemented with some success. However, these strategies did not adequately and sustainably reduce the heat stress. Therefore, it is crucial to take proactive measures to mitigate the effects of heat stress on poultry, ensuring optimal production and promoting poultry well-being. Embryonic thermal manipulation (TM) involves manipulating the embryonic environment's temperature to enhance broilers' thermotolerance and growth performance. One of the most significant benefits of this approach is its cost-effectiveness and saving time associated with traditional management practices. Given its numerous advantages, embryonic TM  is a promising strategy for enhancing broiler production and profitability in the poultry industry. TM increases the standard incubation temperature in the mid or late embryonic stage to induce epigenetic thermal adaption and embryonic metabolism. Therefore, this review aims to summarize the available literature and scientific evidence of the beneficial effect of pre-hatch thermal manipulation on broiler health and performance.

2.
J Anim Sci Biotechnol ; 15(1): 8, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246989

RESUMO

BACKGROUND: High environmental temperatures induce heat stress in broiler chickens, affecting their health and production performance. Several dietary, managerial, and genetics strategies have been tested with some success in mitigating heat stress (HS) in broilers. Developing novel HS mitigation strategies for sustaining broiler production is critically needed. This study investigated the effects of pre-hatch thermal manipulation (TM) and post-hatch baicalein supplementation on growth performance and health parameters in heat-stressed broilers. RESULTS: Six hundred fertile Cobb 500 eggs were incubated for 21 d. After candling on embryonic day (ED) 10, 238 eggs were thermally manipulated at 38.5 °C with 55% relative humidity (RH) from ED 12 to 18, then transferred to the hatcher (ED 19 to 21, standard temperature) and 236 eggs were incubated at a controlled temperature (37.5 °C) till hatch. After hatch, 180-day-old chicks from both groups were raised in 36 pens (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) control heat stress (CHS), 4) thermal manipulation heat stress (TMHS), 5) control heat stress supplement (CHSS), and 6) thermal manipulation heat stress supplement (TMHSS). All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32-33 °C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22-24 °C) environment was maintained in the Control and TM groups. RH was constant (50% ± 5%) throughout the trial. All the data were analyzed using one-way ANOVA in R and GraphPad software at P < 0.05 and are presented as mean ± SEM. Heat stress significantly decreased (P < 0.05) the final body weight and ADG in CHS and TMHS groups compared to the other groups. Embryonic TM significantly increased (P < 0.05) the expression of heat shock protein-related genes (HSP70, HSP90, and HSPH1) and antioxidant-related genes (GPX1 and TXN). TMHS birds showed a significant increment (P < 0.05) in total cecal volatile fatty acid (VFA) concentration compared to the CHS birds. The cecal microbial analysis showed significant enrichment (P < 0.05) in alpha and beta diversity and Coprococcus in the TMHSS group. CONCLUSIONS: Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens' growth performance, upregulate favorable gene expression, increase VFA production, and promote gut health by increasing beneficial microbial communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA