Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Comput Aided Mol Des ; 37(2): 75-90, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494599

RESUMO

Chagas disease, also known as American trypanosomiasis, is a neglected tropical disease caused by the protozoa Trypanosoma cruzi, affecting nearly 7 million people only in the Americas. Polyamines are essential compounds for parasite growth, survival, and differentiation. However, because trypanosomatids are auxotrophic for polyamines, they must be obtained from the host by specific transporters. In this investigation, an ensemble of QSAR classifiers able to identify polyamine analogs with trypanocidal activity was developed. Then, a multi-template homology model of the dimeric polyamine transporter of T. cruzi, TcPAT12, was created with Rosetta, and then refined by enhanced sampling molecular dynamics simulations. Using representative snapshots extracted from the trajectory, a docking model able to discriminate between active and inactive compounds was developed and validated. Both models were applied in a parallel virtual screening campaign to repurpose known drugs as anti-trypanosomal compounds inhibiting polyamine transport in T. cruzi. Montelukast, Quinestrol, Danazol, and Dutasteride were selected for in vitro testing, and all of them inhibited putrescine uptake in biochemical assays, confirming the predictive ability of the computational models. Furthermore, all the confirmed hits proved to inhibit epimastigote proliferation, and Quinestrol and Danazol were able to inhibit, in the low micromolar range, the viability of trypomastigotes and the intracellular growth of amastigotes.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Putrescina/uso terapêutico , Ligantes , Danazol/uso terapêutico , Quinestrol/uso terapêutico , Poliaminas/química , Poliaminas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Proteínas de Membrana Transportadoras/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/química
2.
Clin Sci (Lond) ; 135(3): 575-588, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33496327

RESUMO

Hemolytic Uremic Syndrome (HUS), a disease triggered by Shiga toxin (Stx), is characterized by hemolytic anemia, thrombocytopenia and renal failure. The inflammatory response mediated by polymorphonuclear neutrophils (PMNs) and monocytes is essential to HUS onset. Still, the role of anti-inflammatory cytokines is less clear. The deficiency of IL-10, an anti-inflammatory cytokine, leads to severe pathology in bacterial infections but also to beneficial effects in models of sterile injury. The aim of this work was to analyze the role of IL-10 during HUS. Control and IL-10 lacking mice (IL-10-/-) were intravenously injected with Stx type 2 (Stx2) and survival rate was evaluated. PMN and circulating and renal pro- and anti-inflammatory factors were analyzed by FACS and enzyme-linked immunosorbent assay (ELISA) respectively. IL-10-/- mice showed a higher survival associated with lower renal damage reflected by reduced plasma urea and creatinine levels than control mice. Circulating PMN increased at 72 h in both mouse strains accompanied by an up-regulation of CD11b in control mice. In parallel, renal PMN were significantly increased only in control mice after toxin. Plasma TNF-α, IL-6 and corticosterone levels were higher increased in IL-10-/- than control mice. Simultaneously renal TNF-α raised constantly but was accompanied by increased TGF-ß levels in IL-10-/- mice. These results demonstrate that the profile of circulating and renal cytokines after Stx2 differed between strains suggesting that balance of these factors could participate in renal protection. We conclude that IL-10 absence has a protective role in an experimental model of HUS by reducing PMN recruitment into kidney and renal damage, and increasing mice survival.


Assuntos
Síndrome Hemolítico-Urêmica/induzido quimicamente , Interleucina-10/metabolismo , Toxina Shiga II/toxicidade , Animais , Corticosterona/sangue , Síndrome Hemolítico-Urêmica/patologia , Interleucina-10/genética , Interleucina-6/sangue , Rim/química , Rim/patologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos , Taxa de Sobrevida , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa/sangue
3.
J Enzyme Inhib Med Chem ; 35(1): 21-30, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619095

RESUMO

Trypanosoma cruzi carbonic anhydrase (TcCA) has recently emerged as an interesting target for the design of new compounds to treat Chagas disease. In this study we report the results of a structure-based virtual screening campaign to identify novel and selective TcCA inhibitors. The combination of properly validated computational methodologies such as comparative modelling, molecular dynamics and docking simulations allowed us to find high potency hits, with KI values in the nanomolar range. The compounds also showed trypanocidal effects against T. cruzi epimastigotes and trypomastigotes. All the candidates are selective for inhibiting TcCA over the human isoform CA II, which is encouraging in terms of possible therapeutic safety and efficacy.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Doença de Chagas/tratamento farmacológico , Ciclamatos/farmacologia , Tripanossomicidas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Doença de Chagas/metabolismo , Ciclamatos/síntese química , Ciclamatos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
4.
Clin Infect Dis ; 66(10): 1558-1565, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29360939

RESUMO

Background: Strongyloides stercoralis affects 30-100 million people worldwide. The first-line therapy is ivermectin. Cure is defined as the absence of larvae by parasitological methods 1 year after treatment. To date, no longitudinal parasitological studies for longer periods of time have been conducted to confirm its cure. Here, we evaluated treatment response in long-term follow-up patients with chronic infection using parasitological and molecular methods for larvae or DNA detection. Methods: A prospective, descriptive, observational study was conducted between January 2009 and September 2015 in Buenos Aires, Argentina. Twenty-one patients with S. stercoralis diagnosis were evaluated 30, 60, and 90 days as well as 1, 2, 3, and/or 4 years after treatment by conventional methods (fresh stool, Ritchie method, agar plate culture), S. stercoralis-specific polymerase chain reaction (PCR) in stool DNA, and eosinophil values. Results: During follow-up, larvae were detected by conventional methods in 14 of 21 patients. This parasitological reactivation was observed starting 30 days posttreatment (dpt) and then at different times since 90 dpt. Eosinophil values decreased (P = .001) 30 days after treatment, but their levels were neither associated with nor predicted these reactivations. However, S. stercoralis DNA was detected by PCR in all patients, both in their first and subsequent stool samples, thus reflecting the poor efficacy of ivermectin at eradicating parasite from host tissues. Asymptomatic eosinophilia was the most frequent clinical form among chronically infected patients. Conclusions: These results suggest that the parasitological cure is unlikely. Strongyloidiasis must be considered a chronic infection and ivermectin administration schedules should be reevaluated.


Assuntos
Antiparasitários/uso terapêutico , Ivermectina/uso terapêutico , Estrongiloidíase/tratamento farmacológico , Estrongiloidíase/epidemiologia , Adulto , Idoso , Doenças Endêmicas , Eosinofilia , Feminino , Humanos , Hospedeiro Imunocomprometido , Masculino , Pessoa de Meia-Idade
5.
Rev Panam Salud Publica ; 36(3): 197-200, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25418771

RESUMO

Human behavior plays a key role in the dynamics of dengue transmission. However, research on the relationship between human movement and dengue transmission within endemic countries is limited. From January 2008 to December 2011, the authors of this study conducted a retrospective analysis of imported dengue infections in Bogotá, Colombia. Bogotá is a vector-transmission-free city that is also the capital district and most populated municipality in Colombia. The study revealed that 1) Bogotá inhabitants acquired dengue infection in diverse localities throughout the country but the largest proportion of cases (35.6%) were contracted at popular tourist destinations in dengue-endemic areas near Bogotá (<200-km radius from city limits), and 2) the number of imported dengue cases increased after major holidays, a transmission pattern not seen in dengue-endemic areas, where disease incidence correlates with rainy periods. It is therefore recommended that physicians consider the effect of travel when diagnosing their patients' illnesses, especially outside dengue-endemic areas where diagnosis of the disease can be challenging due to its nonspecific symptoms. The study also showed that analysis of dengue cases imported to regions free of vector transmission can generate an evidence-based model for characterizing the impact of human movement on the spread of diseases like dengue in countries where they are endemic.


Assuntos
Dengue/transmissão , Viagem , Animais , Colômbia/epidemiologia , Dengue/epidemiologia , Doenças Endêmicas , Humanos , Insetos Vetores , Risco
8.
Beilstein J Nanotechnol ; 14: 804-818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533841

RESUMO

Chagas disease is a neglected endemic disease prevalent in Latin American countries, affecting around 8 million people. The first-line treatment, benznidazole (BNZ), is effective in the acute stage of the disease but has limited efficacy in the chronic stage, possibly because current treatment regimens do not eradicate transiently dormant Trypanosoma cruzi amastigotes. Nanostructured lipid carriers (NLC) appear to be a promising approach for delivering pharmaceutical active ingredients as they can have a positive impact on bioavailability by modifying the absorption, distribution, and elimination of the drug. In this study, BNZ was successfully loaded into nanocarriers composed of myristyl myristate/Crodamol oil/poloxamer 188 prepared by ultrasonication. A stable NLC formulation was obtained, with ≈80% encapsulation efficiency (%EE) and a biphasic drug release profile with an initial burst release followed by a prolonged phase. The hydrodynamic average diameter and zeta potential of NLC obtained by dynamic light scattering were approximately 150 nm and -13 mV, respectively, while spherical and well-distributed nanoparticles were observed by transmission electron microscopy. Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and small-angle X-ray scattering analyses of the nanoparticles indicated that BNZ might be dispersed in the nanoparticle matrix in an amorphous state. The mean size, zeta potential, polydispersity index, and %EE of the formulation remained stable for at least six months. The hemolytic effect of the nanoparticles was insignificant compared to that of the positive lysis control. The nanoparticle formulation exhibited similar performance in vitro against T. cruzi compared to free BNZ. No formulation-related cytotoxic effects were observed on either Vero or CHO cells. Moreover, BNZ showed a 50% reduction in CHO cell viability at 125 µg/mL, whereas NLC-BNZ and non-loaded NLC did not exert a significant effect on cell viability at the same concentration. These results show potential for the development of new nanomedicines against T. cruzi.

9.
Front Cell Infect Microbiol ; 12: 901880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846750

RESUMO

In the pathogen Typanosoma cruzi, the calcium ion (Ca2+) regulates key processes for parasite survival. However, the mechanisms decoding Ca2+ signals are not fully identified or understood. Here, we investigate the role of a hypothetical Ca2+-binding protein named TcCAL1 in the in vitro life cycle of T. cruzi. Results showed that the overexpression of TcCAL1 fused to a 6X histidine tag (TcCAL1-6xHis) impaired the differentiation of epimastigotes into metacyclic trypomastigotes, significantly decreasing metacyclogenesis rates. When the virulence of transgenic metacyclic trypomastigotes was explored in mammalian cell invasion assays, we found that the percentage of infection was significantly higher in Vero cells incubated with TcCAL1-6xHis-overexpressing parasites than in controls, as well as the number of intracellular amastigotes. Additionally, the percentage of Vero cells with adhered metacyclic trypomastigotes significantly increased in samples incubated with TcCAL1-6xHis-overexpressing parasites compared with controls. In contrast, the differentiation rates from metacyclic trypomastigotes to axenic amastigotes or the epimastigote proliferation in the exponential phase of growth have not been affected by TcCAL1-6xHis overexpression. Based on our findings, we speculate that TcCAL1 exerts its function by sequestering intracellular Ca2+ by its EF-hand motifs (impairing metacyclogenesis) and/or due to an unknown activity which could be amplified by the ion binding (promoting cell invasion). This work underpins the importance of studying the kinetoplastid-specific proteins with unknown functions in pathogen parasites.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Chlorocebus aethiops , Estágios do Ciclo de Vida , Mamíferos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Células Vero
10.
Front Immunol ; 13: 946350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860267

RESUMO

Background: Chagas disease is a lifelong infection caused by the protozoa Trypanosoma cruzi endemic in Latin-America and emergent worldwide. Decades after primary infection, 20-30% of infected people develop chronic Chagas cardiomyopathy (CCC) while the others remain asymptomatic. CCC pathogenesis is complex but associated with sustained pro-inflammatory response leading to tissue damage. Hence, levels of IL-10 could have a determinant role in CCC etiology. Studies with Latin-American populations have addressed the association of genetic variants of IL-10 and the risk of developing CCC with inconsistent results. We carried out a case control study to explore the association between IL-10-1082G>A (rs18008969), -819C>T (rs1800871), -592A>C (rs1800872) polymorphisms and CCC in a population attending a hospital in Buenos Aires Argentina. Next, a systematic review of the literature and a meta-analysis were conducted combining present and previous studies to further study this association. Methods: Our case control study included 122 individuals with chronic T. cruzi infection including 64 patients with any degree of CCC and 58 asymptomatic individuals. Genotyping of IL-10 -1082G>A, -819C>T, -592A>C polymorphisms was performed by capillary sequencing of the region spanning the three polymorphic sites and univariate and multivariate statistical analysis was undertaken. Databases in English, Spanish and Portuguese language were searched for papers related to these polymorphisms and Chagas disease up to December 2021. A metanalysis of the selected literature and our study was performed based on the random effect model. Results: In our cohort, we found a significant association between TT genotype of -819 rs1800871 and AA genotype of -592 rs1800872 with CCC under the codominant (OR=5.00; 95%CI=1.12-23.87 P=0,04) and the recessive models (OR=5.37; 95%CI=1.12-25.68; P=0,03). Of the genotypes conformed by the three polymorphic positions, the homozygous genotype ATA was significantly associated with increased risk of CCC. The results of the meta-analysis of 754 cases and 385 controls showed that the TT genotype of -819C>T was associated with increased CCC risk according to the dominant model (OR=1.13; 95% CI=1.02-1.25; P=0,03). Conclusion: The genotype TT at -819 rs1800871 contributes to the genetic susceptibility to CCC making this polymorphism a suitable candidate to be included in a panel of predictive biomarkers of disease progression.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Estudos de Casos e Controles , Cardiomiopatia Chagásica/genética , Doença de Chagas/genética , Humanos , Interleucina-10/genética , Fatores de Risco
11.
Front Immunol ; 11: 572178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072115

RESUMO

IL-10 is an anti-inflammatory cytokine that plays a significant role in the modulation of the immune response in many pathological conditions, including infectious diseases. Infection with Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas disease, results in an ongoing inflammatory response that may cause heart dysfunction, ultimately leading to heart failure. Given its infectious and inflammatory nature, in this work we analyzed whether the lack of IL-10 hinders the anti-inflammatory effects of fenofibrate, a PPARα ligand, in a murine model of Chagas heart disease (CHD) using IL-10 knockout (IL-10 KO) mice. Our results show fenofibrate was able to restore the abnormal cardiac function displayed by T. cruzi-infected mice lacking IL-10. Treatment with fenofibrate reduced creatine kinase (CK) levels in sera of IL-10 KO mice infected with T. cruzi. Moreover, although fenofibrate could not modulate the inflammatory infiltrates developing in the heart, it was able to reduce the increased collagen deposition in infected IL-10 KO mice. Regarding pro-inflammatory mediators, the most significant finding was the increase in serum IL-17. These were reduced in IL-10 KO mice upon fenofibrate treatment. In agreement with this, the expression of RORγt was reduced. Infection of IL-10 KO mice increased the expression of YmI, FIZZ and Mannose Receptor (tissue healing markers) that remained unchanged upon treatment with fenofibrate. In conclusion, our work emphasizes the role of anti-inflammatory mechanisms to ameliorate heart function in CHD and shows, for the first time, that fenofibrate attains this through IL-10-dependent and -independent mechanisms.


Assuntos
Cardiomiopatia Chagásica/tratamento farmacológico , Fenofibrato/uso terapêutico , Hipolipemiantes/uso terapêutico , Interleucina-10/metabolismo , Miocárdio/patologia , Trypanosoma cruzi/fisiologia , Tripanossomíase/tratamento farmacológico , Animais , Células Cultivadas , Cardiomiopatia Chagásica/imunologia , Creatina Quinase/sangue , Modelos Animais de Doenças , Humanos , Interleucina-10/genética , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Tripanossomíase/imunologia , Cicatrização
12.
J Leukoc Biol ; 105(1): 163-175, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30371945

RESUMO

IL-10 is a pleiotropic cytokine with immunoregulatory functions affecting various cell types. In a model of experimental infection with the protozoan Trypanosoma cruzi (T. cruzi), we found increased morbidity and lower parasite control in IL-10 deficient mice (IL-10 KO) compared to wild-type (WT) mice. Despite enhanced Mϕ function and dendritic cell activation, IL-10 KO mice were more susceptible to infection. The kinetics of T cells in spleen and peripheral blood revealed that infected IL-10 KO mice failed to increase the number of spleen and circulating total CD8+ T cells, a phenomenon observed from the second week of infection in WT mice. Total CD8+ T cells from IL-10 KO mice exhibited diminished proliferation, cytotoxic potential and IFN-γ production than their WT counterparts and T. cruzi-specific CD8+ T cells displayed reduced in vivo cytotoxicity. The absence of IL-10 selectively affected expansion, survival, and increased PD-1 expression of CD8+ T cells without altering these same parameters on CD4+ T cells. Increased inhibitory receptors expression and down-modulation of T-bet by CD8+ T cells from IL-10 KO infected mice were compatible with a T cell exhaustion phenotype. Collectively, these findings reveal that during acute infection, IL-10 plays a previously unrecognized stimulatory role on CD8+ T cells, the most relevant lymphocyte population for the control of intracellular T. cruzi stages. A clear knowledge of the underlying mechanisms that drive effector functions of cytotoxic T cells is critical to understand pathogen persistence and rational design of prophylactic strategies against T. cruzi.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Interleucina-10/metabolismo , Ativação Linfocitária/imunologia , Trypanosoma cruzi/patogenicidade , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Interleucina-2/biossíntese , Ativação Linfocitária/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Interleucina-10/metabolismo , Proteínas Recombinantes/farmacologia , Baço/patologia , Virulência
13.
Front Immunol ; 10: 1267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214200

RESUMO

Anti-parasitic treatment for Chagas disease mainly relies on benznidazole, which is virtually the only drug available in the market. Besides its anti-parasitic effects, benznidazole has anti-inflammatory properties. In this work we studied the mechanisms involved in the latter, demonstrating the participation of the IL-10/STAT3/SOCS3 pathway. To achieve this goal, the anti-inflammatory properties of benznidazole were studied using an in vitro model of cardiomyocyte primary culture stimulated with LPS. LPS increased both SOCS3 expression and STAT3 phosphorylation. The addition of benznidazole increased their expression even further. Specific inhibition of STAT3 precluded this effect, suggesting a role for STAT3 in the increase of SOCS3 expression induced by benznidazole. To assess the participation of SOCS3 in the anti-inflammatory effect of benznidazole, we accomplished specific knockdown of SOCS3 with siRNA. Silencing of SOCS3 in cardiomyocytes precluded the inhibitory effects of benznidazole on TNF-α, IL-6, iNOS expression and NO release. Moreover, in the absence of SOCS3, benznidazole could neither prevent IKK phosphorylation nor IκBα degradation, supporting the notion that SOCS3 is required for the benznidazole-mediated inhibition of the NF-κB pathway. Previously, we demonstrated that IL-10 increases the expression of SOCS3 in cultured cardiomyocytes. Here, we found that benznidazole shows a trend to increased IL-10 expression. To evaluate whether benznidazole increased SOCS3 in an IL-10-dependent manner, cardiomyocytes from IL-10 knockout mice were pre-treated with benznidazole and stimulated with LPS. Benznidazole neither inhibited NO release nor avoid IKK phosphorylation or IκBα degradation, showing that IL-10 is required for benznidazole-mediated inhibition of NF-κB. Moreover, exogenous addition of IL-10 to IL-10 knockout cardiomyocytes restored the inhibitory effect of benznidazole on NO release. The results reported herein show, for the first time, that the IL-10/STAT3/SOCS3 axis is involved in the anti-inflammatory effects of benznidazole. These findings may add up to new therapeutic strategies for chronic Chagas disease given its inflammatory nature.


Assuntos
Anti-Inflamatórios/farmacologia , Interleucina-10/metabolismo , Nitroimidazóis/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Anti-Inflamatórios/química , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Interleucina-10/genética , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Nitroimidazóis/química , Proteína 3 Supressora da Sinalização de Citocinas/genética
14.
Infect Immun ; 76(6): 2633-41, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18347042

RESUMO

A main feature of acute infection with Trypanosoma cruzi is the presence of immunological disorders. A previous study demonstrated that acute infection with the virulent RA strain downregulates the expression of major histocompatibility complex class II (MHC-II) on antigen-presenting cells and impairs the T-cell stimulatory capacity of splenic dendritic cells (DC). In the present work, we assessed the ability of trypomastigotes (Tp) to modulate the differentiation stage and functionality of bone marrow-derived DC in vitro. We observed that the Tp stage of T. cruzi failed to activate DC, which preserved their low expression of MHC-II and costimulatory molecules, as well as their endocytic activity. We also show that Tp induced transforming growth factor beta (TGF-beta) secretion by DC and enhanced the gap between interleukin-10 (IL-10) and IL-12p70 production, showing a higher IL-10/IL-12p70 ratio upon lipopolysaccharide (LPS) treatment. In addition, we observed that Tp prevented DC full activation induced by LPS, thereby downregulating their MHC-II surface expression and inhibiting their capacity to stimulate lymphocyte proliferation. In vitro IL-10 neutralization during the differentiation process of DC with Tp+LPS showed a reversion of their inhibitory effect during mixed lymphocyte reaction. In contrast, only simultaneous neutralization of IL-10 and TGF-beta, after DC differentiation, was involved in the partial restitution of lymphocyte proliferation. Since both TGF-beta and IL-10 are immunosuppressive cytokines essential in the modulation of the immune response and important in the induction of tolerance, our results suggest for the first time that Tp are responsible for the generation of regulatory DC in vitro.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Células Dendríticas/metabolismo , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Regulação da Expressão Gênica , Genes MHC da Classe II/fisiologia , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
15.
Microbes Infect ; 10(7): 781-90, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18534889

RESUMO

The role of non-lymphoid tissue T cells expressing the BV9 family T-cell receptor (TCRBV9) was studied in mice chronically infected with the Trypanosoma cruzi. Heart and skeletal muscles had higher frequencies and ratios of CD8+ TCRBV9+ to CD4+ TCRBV9+ T cells than lymph nodes. Also, homing experiments of CFSE-labeled T cells showed preferential homing of TCRBV9+ T cells to heart tissue. In vitro proliferation assays showed higher [3H]thymidine uptake by non-lymphoid tissue TCRBV9+ T cells than lymph node TCRBV9+ T cells co-cultured with antigen-presenting cells (APC), in response to T. cruzi amastigote antigens (TcAg). Lymph node TCRBV9+ T cells secreted IFN-gamma and IL-10, but not IL-4, upon stimulation with TcAg in the presence of APC. Moreover, non-lymphoid tissue-derived TCRBV9+ T cells showed impairment of IFN-gamma, no IL-4 production, and higher levels of IL-10 secretion under the same conditions. Our results show that T. cruzi-specific IFN-gamma- and IL-10-producing TCR BV9+ T cells develop in the mouse lymph nodes during chronic infection with T. cruzi. Upon homing to non-lymphoid parasitized tissues, IFN-gamma secretion might subside due to the overt secretion of IL-10, of which TCRBV9+ T cells represent a significant source.


Assuntos
Interferon gama/metabolismo , Interleucina-10/imunologia , Receptores de Antígenos de Linfócitos T/análise , Linfócitos T/imunologia , Trypanosoma cruzi/imunologia , Animais , Proliferação de Células , Doença de Chagas/imunologia , Interleucina-4/metabolismo , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Músculo Esquelético/imunologia , Miocárdio/imunologia , Linfócitos T/química
16.
PLoS Negl Trop Dis ; 12(5): e0006475, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29727453

RESUMO

TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage of Trypanosoma cruzi. We have previously shown that TcTASV-C is located at the parasite surface and secreted to the medium. Here we report that the expression of different TcTASV-C genes occurs simultaneously at the trypomastigote stage and while some secreted and parasite-associated products are found in both fractions, others are different. Secreted TcTASV-C are mainly shedded through trypomastigote extracellular vesicles, of which they are an abundant constituent, despite its scarce expression on culture-derived trypomastigotes. In contrast, TcTASV-C is highly expressed in bloodstream trypomastigotes; its upregulation in bloodstream parasites was observed in different T. cruzi strains and was specific for TcTASV-C, suggesting that some host-molecules trigger TcTASV-C expression. TcTASV-C is also strongly secreted by bloodstream parasites. A DNA prime-protein boost immunization scheme with TcTASV-C was only partially effective to control the infection in mice challenged with a highly virulent T. cruzi strain. Vaccination triggered a strong humoral response that delayed the appearance of bloodstream trypomastigotes at the early phase of the infection. Linear epitopes recognized by vaccinated mice were mapped within the TcTASV-C family motif, suggesting that blockade of secreted TcTASV-C impacts on the settlement of infection. Furthermore, although experimental and naturally T. cruzi-infected hosts did not react with antigens from extracellular vesicles, vaccinated and challenged mice recognized not only TcTASV-C but also other vesicle-antigens. We hypothesize that TcTASV-C is involved in the establishment of the initial T. cruzi infection in the mammalian host. Altogether, these results point towards TcTASV-C as a novel secreted virulence factor of T. cruzi trypomastigotes.


Assuntos
Sangue/parasitologia , Doença de Chagas/parasitologia , Vesículas Extracelulares/parasitologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Fatores de Virulência/metabolismo , Animais , Doença de Chagas/sangue , Doença de Chagas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C3H , Família Multigênica , Transporte Proteico , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Fatores de Virulência/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-29888213

RESUMO

Chagas disease is a neglected tropical disease endemic to Latin America, though migratory movements have recently spread it to other regions. Here, we have applied a cascade virtual screening campaign combining ligand- and structure-based methods. In order to find novel inhibitors of putrescine uptake in Trypanosoma cruzi, an ensemble of linear ligand-based classifiers obtained by has been applied as initial screening filter, followed by docking into a homology model of the putrescine permease TcPAT12. 1,000 individual linear classifiers were inferred from a balanced dataset. Subsequently, different schemes were tested to combine the individual classifiers: MIN operator, average ranking, average score, average voting, with MIN operator leading to the best performance. The homology model was based on the arginine/agmatine antiporter (AdiC) from Escherichia coli as template. It showed 64% coverage of the entire query sequence and it was selected based on the normalized Discrete Optimized Protein Energy parameter and the GA341 score. The modeled structure had 96% in the allowed area of Ramachandran's plot, and none of the residues located in non-allowed regions were involved in the active site of the transporter. Positivity Predictive Value surfaces were applied to optimize the score thresholds to be used in the ligand-based virtual screening step: for that purpose Positivity Predictive Value was charted as a function of putative yields of active in the range 0.001-0.010 and the Se/Sp ratio. With a focus on drug repositioning opportunities, DrugBank and Sweetlead databases were subjected to screening. Among 8 hits, cinnarizine, a drug frequently prescribed for motion sickness and balance disorder, was tested against T. cruzi epimastigotes and amastigotes, confirming its trypanocidal effects and its inhibitory effects on putrescine uptake. Furthermore, clofazimine, an antibiotic with already proven trypanocidal effects, also displayed inhibitory effects on putrescine uptake. Two other hits, meclizine and butoconazole, also displayed trypanocidal effects (in the case of meclizine, against both epimastigotes and amastigotes), without inhibiting putrescine uptake.


Assuntos
Transporte Biológico/efeitos dos fármacos , Putrescina/metabolismo , Tripanossomicidas/antagonistas & inibidores , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Doença de Chagas/dietoterapia , Cinarizina/antagonistas & inibidores , Clofazimina/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos , Imidazóis/antagonistas & inibidores , Meclizina/antagonistas & inibidores , Proteínas de Membrana Transportadoras , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo
18.
Acta Trop ; 157: 169-77, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26868702

RESUMO

Underdiagnosis of chronic infection with the nematode Strongyloides stercoralis may lead to severe disease in the immunosuppressed. Thus, we have set-up a specific and highly sensitive molecular diagnosis in stool samples. Here, we compared the accuracy of our polymerase chain reaction (PCR)-based method with that of conventional diagnostic methods for chronic infection. We also analyzed clinical and epidemiological predictors of infection to propose an algorithm for the diagnosis of strongyloidiasis useful for the clinician. Molecular and gold standard methods were performed to evaluate a cohort of 237 individuals recruited in Buenos Aires, Argentina. Subjects were assigned according to their immunological status, eosinophilia and/or history of residence in endemic areas. Diagnosis of strongyloidiasis by PCR on the first stool sample was achieved in 71/237 (29.9%) individuals whereas only 35/237(27.4%) were positive by conventional methods, requiring up to four serial stool samples at weekly intervals. Eosinophilia and history of residence in endemic areas have been revealed as independent factors as they increase the likelihood of detecting the parasite according to our study population. Our results underscore the usefulness of robust molecular tools aimed to diagnose chronic S. stercoralis infection. Evidence also highlights the need to survey patients with eosinophilia even when history of an endemic area is absent.


Assuntos
Testes Diagnósticos de Rotina , Eosinofilia/sangue , Fezes/parasitologia , Larva , Strongyloides stercoralis/genética , Strongyloides stercoralis/isolamento & purificação , Estrongiloidíase/diagnóstico , Adolescente , Adulto , Idoso , Algoritmos , Animais , Argentina , Estudos de Coortes , Doenças Endêmicas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Adulto Jovem
19.
Int J Antimicrob Agents ; 48(1): 91-95, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27216381

RESUMO

Despite current efforts worldwide to develop new medications against Chagas disease, only two drugs are available, nifurtimox and benznidazole. Both drugs require prolonged treatment and have multiple side effects and limited efficacy on adult patients chronically infected with Trypanosoma cruzi. Recently, computer-guided drug repositioning led to the discovery of the trypanocidal effects of clofazimine and benidipine. These compounds showed inhibitory effects on cruzipain, the major cysteine protease of T. cruzi, of different parasite stages and in a murine model of acute Chagas disease. The aim of this work was to determine the efficacy of these novel cruzipain inhibitors when administered in a murine model of chronic Chagas disease. Benidipine and clofazimine were able to reduce the parasite burden in cardiac and skeletal muscles of chronically infected mice compared with untreated mice as well as diminish the inflammatory process in these tissues. Further studies should be performed to study the synergism with benznidazole and nifurtimox in view of combined therapies.


Assuntos
Antiprotozoários/administração & dosagem , Doença de Chagas/tratamento farmacológico , Clofazimina/administração & dosagem , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/administração & dosagem , Nifedipino/análogos & derivados , Trypanosoma cruzi/enzimologia , Adulto , Animais , Antiprotozoários/isolamento & purificação , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Doença Crônica/tratamento farmacológico , Clofazimina/isolamento & purificação , Inibidores de Cisteína Proteinase/isolamento & purificação , Modelos Animais de Doenças , Tratamento Farmacológico/métodos , Humanos , Masculino , Camundongos Endogâmicos C3H , Músculos/parasitologia , Nifedipino/administração & dosagem , Nifedipino/isolamento & purificação , Carga Parasitária , Proteínas de Protozoários , Trypanosoma cruzi/efeitos dos fármacos
20.
Acta Trop ; 152: 8-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26272680

RESUMO

Chagas disease is a major unsolved health issue in Latin America and an emerging threat worldwide. New drugs are urgently needed for chemotherapy as those available (benznidazole and nifurtimox) have variable efficacy and elevated toxicity. Efforts are actually oriented to improve tools and technologies (e.g. transgenic parasites, flow cytometry or image-based systems) for the screening of large numbers of candidate compounds for their activity against Trypanosoma cruzi (T. cruzi). Methods that test drug efficacy and selectivity in the same assay are suitable to accelerate the process of drug discovery. Here, we developed a GFP expressing T. cruzi from a moderate virulence stock and confirmed that the transgenic parasite retained the biological characteristics of the parental strain. With this tool, we established a flow cytometer-based method to simultaneously test drug activity against intracellular amastigotes and toxicity to the host cell. This one-step procedure allows determining the selectivity index of the tested compound in a sensitive and accurate manner even with low infection rates. This method can provide additional information on the interactions between drug, parasites and host cell and could be adapted to other trypanosomatids and protozoa with intracellular multiplication.


Assuntos
Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Descoberta de Drogas/métodos , Nifurtimox/uso terapêutico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Citometria de Fluxo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA