Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 34(10): 2583-2599, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637270

RESUMO

Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance.


Assuntos
Alquil e Aril Transferases/genética , Arabidopsis/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos/genética , Arabidopsis/metabolismo , Butadienos , Evolução Molecular , Hemiterpenos , Mutagênese Sítio-Dirigida , Pentanos , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos
2.
J Mass Spectrom ; 50(8): 1013-1022, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28338277

RESUMO

The grapevine (Vitis vinifera) is one of the most widely cultivated fruit crops globally, and one of its most important diseases in terms of economic losses is downy mildew, caused by Plasmopara viticola. Several wild Vitis species have been found to be resistant to this pathogen and have been used in breeding programs to introduce resistance traits to susceptible cultivars. Plant defense is based on different mechanisms, and volatile organic compounds (VOCs) play a major role in the response to insects and pathogens. Although grapevine resistance mechanisms and the production of secondary metabolites have been widely characterized in resistant genotypes, the emission of VOCs has not yet been investigated following P. viticola inoculation. A Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) was used to analyze the VOCs emitted by in vitro-grown plants of grapevine genotypes with different levels of resistance. Downy mildew inoculation significantly increased the emission of monoterpenes and sesquiterpenes by the resistant SO4 and Kober 5BB genotypes, but not by the susceptible V. vinifera Pinot noir. Volatile terpenes were implicated in plant defense responses against pathogens, suggesting that they could play a major role in the resistance against downy mildew by direct toxicity or by inducing grapevine resistance. The grapevine genotypes differed in terms of the VOC emission pattern of both inoculated and uninoculated plants, indicating that PTR-ToF-MS could be used to screen hybrids with different levels of downy mildew resistance. Copyright © 2015 John Wiley & Sons, Ltd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA