Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 261-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531461

RESUMO

Geobacillus stearothermophilus T6 is a thermophilic, Gram-positive soil bacterium that possesses an extensive and highly regulated hemicellulolytic system, allowing the bacterium to efficiently degrade high-molecular-weight polysaccharides such as xylan, arabinan and galactan. As part of the xylan-degradation system, the bacterium uses a number of side-chain-cleaving enzymes, one of which is Axe2, a 219-amino-acid intracellular serine acetylxylan esterase that removes acetyl side groups from xylooligosaccharides. Bioinformatic analyses suggest that Axe2 belongs to the lipase GDSL family and represents a new family of carbohydrate esterases. In the current study, the detailed three-dimensional structure of Axe2 is reported, as determined by X-ray crystallography. The structure of the selenomethionine derivative Axe2-Se was initially determined by single-wavelength anomalous diffraction techniques at 1.70 Šresolution and was used for the structure determination of wild-type Axe2 (Axe2-WT) and the catalytic mutant Axe2-S15A at 1.85 and 1.90 Šresolution, respectively. These structures demonstrate that the three-dimensional structure of the Axe2 monomer generally corresponds to the SGNH hydrolase fold, consisting of five central parallel ß-sheets flanked by two layers of helices (eight α-helices and five 310-helices). The catalytic triad residues, Ser15, His194 and Asp191, are lined up along a substrate channel situated on the concave surface of the monomer. Interestingly, the Axe2 monomers are assembled as a `doughnut-shaped' homo-octamer, presenting a unique quaternary structure built of two staggered tetrameric rings. The eight active sites are organized in four closely situated pairs, which face the relatively wide internal cavity. The biological relevance of this octameric structure is supported by independent results obtained from gel-filtration, TEM and SAXS experiments. These data and their comparison to the structural data of related hydrolases are used for a more general discussion focusing on the structure-function relationships of enzymes of this category.


Assuntos
Acetilesterase/química , Proteínas de Bactérias/química , Geobacillus stearothermophilus/química , Glucuronatos/química , Oligossacarídeos/química , Acetilesterase/genética , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Geobacillus stearothermophilus/enzimologia , Cinética , Modelos Moleculares , Mutação , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato
2.
Artigo em Inglês | MEDLINE | ID: mdl-23545652

RESUMO

Acetylxylan esterases are part of the hemi-cellulolytic system of many microorganisms which utilize plant biomass for growth. Xylans, which are polymeric sugars that constitute a significant part of the plant biomass, are usually substituted with acetyl side groups attached at position 2 or 3 of the xylose backbone units. Acetylxylan esterases hydrolyse the ester linkages of the xylan acetyl groups and thus improve the ability of main-chain hydrolysing enzymes to break down the sugar backbone units. As such, these enzymes play an important part in the hemi-cellulolytic utilization system of many microorganisms that use plant biomass for growth. Interest in the biochemical characterization and structural analysis of these enzymes stems from their numerous potential biotechnological applications. An acetylxylan esterase (Axe2) of this type from Geobacillus stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized. One of the crystal forms obtained (RB1) belonged to the tetragonal space group I422, with unit-cell parameters a = b = 110.2, c = 213.1 Å. A full diffraction data set was collected to 1.85 Å resolution from flash-cooled crystals of the wild-type enzyme at 100 K using synchrotron radiation. A selenomethionine derivative of Axe2 has also been prepared and crystallized for single-wavelength anomalous diffraction experiments. The crystals of the selenomethionine-derivatized Axe2 appeared to be isomorphous to those of the wild-type enzyme and enabled the measurement of a full 1.85 Å resolution diffraction data set at the selenium absorption edge and a full 1.70 Å resolution data set at a remote wavelength. These data are currently being used for three-dimensional structure determination of the Axe2 protein.


Assuntos
Acetilesterase/química , Geobacillus stearothermophilus/enzimologia , Cristalização , Cristalografia por Raios X
3.
Biochem J ; 422(1): 73-82, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19505290

RESUMO

Arabinanases are glycosidases that hydrolyse alpha-(1-->5)- arabinofuranosidic linkages found in the backbone of the pectic polysaccharide arabinan. Here we describe the biochemical characterization and the enzyme-substrate crystal structure of an inverting family 43 arabinanase from Geobacillus stearothermophilus T-6 (AbnB). Based on viscosity and reducing power measurements, and based on product analysis for the hydrolysis of linear arabinan by AbnB, the enzyme works in an endo mode of action. Isothermal titration calorimetry studies of a catalytic mutant with various arabino-oligosaccharides suggested that the enzyme active site can accommodate at least five arabinose units. The crystal structure of AbnB was determined at 1.06 A (1 A=0.1 nm) resolution, revealing a single five-bladed-beta-propeller fold domain. Co-crystallization of catalytic mutants of the enzyme with different substrates allowed us to obtain complex structures of AbnBE201A with arabinotriose and AbnBD147A with arabinobiose. Based on the crystal structures of AbnB together with its substrates, the position of the three catalytic carboxylates: Asp27, the general base; Glu201, the general acid; and Asp147, the pKa modulator, is in agreement with their putative catalytic roles. In the complex structure of AbnBE201A with arabinotriose, a single water molecule is located 2.8 A from Asp27 and 3.7 A from the anomeric carbon. The position of this water molecule is kept via hydrogen bonding with a conserved tyrosine (Tyr229) that is 2.6 A distant from it. The location of this molecule suggests that it can function as the catalytic water molecule in the hydrolysis reaction, resulting in the inversion of the anomeric configuration of the product.


Assuntos
Geobacillus stearothermophilus/enzimologia , Glicosídeo Hidrolases/química , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Glicosídeo Hidrolases/isolamento & purificação , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA