Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080485

RESUMO

Over the years, great attention has been paid to coumarin derivatives, a set of versatile molecules that exhibit a wide variety of biological activities and have few toxic side effects. In this study, we investigated the antidiabetic potential of 6-formyl umbelliferone (6-FU), a novel furanocoumarin isolated from Angelica decursiva. Numerous pharmacological activities of 6-FU have been previously reported; however, the mechanism of its antidiabetic activity is unknown. Therefore, we examined the action of 6-FU on a few candidate-signaling molecules that may underlie its antidiabetic activity, including its inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation (IC50 = 1.13 ± 0.12, 58.36 ± 1.02, 5.11 ± 0.21, and 2.15 ± 0.13 µM, respectively). A kinetic study showed that 6-FU exhibited mixed-type inhibition against α-glucosidase and HRAR and competitive inhibition of PTP1B. Docking simulations of 6-FU demonstrated negative binding energies and close proximity to residues in the binding pockets of those enzymes. We also investigated the molecular mechanisms underlying 6-FU's antidiabetic effects. 6-FU significantly increased glucose uptake and decreased PTP1B expression in insulin-resistant C2C12 skeletal muscle cells. Moreover, 6-FU (0.8-100 µM) remarkably inhibited the formation of fluorescent AGEs in glucose-fructose-induced human serum albumin glycation over the course of 4 weeks. The findings clearly indicate that 6-FU will be useful in the development of multiple target-oriented therapeutic modalities for the treatment of diabetes and diabetes-related complications.


Assuntos
Angelica , Diabetes Mellitus , Furocumarinas , Angelica/química , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Umbeliferonas/farmacologia , Umbeliferonas/uso terapêutico , alfa-Glucosidases/metabolismo
2.
Molecules ; 27(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408532

RESUMO

This present work is designed to evaluate the anti-diabetic potential of 22 ginsenosides via the inhibition against rat lens aldose reductase (RLAR), and human recombinant aldose reductase (HRAR), using DL-glyceraldehyde as a substrate. Among the ginsenosides tested, ginsenoside Rh2, (20S) ginsenoside Rg3, (20R) ginsenoside Rg3, and ginsenoside Rh1 inhibited RLAR significantly, with IC50 values of 0.67, 1.25, 4.28, and 7.28 µM, respectively. Moreover, protopanaxadiol, protopanaxatriol, compound K, and ginsenoside Rh1 were potent inhibitors of HRAR, with IC50 values of 0.36, 1.43, 2.23, and 4.66 µM, respectively. The relationship of structure-activity exposed that the existence of hydroxyl groups, linkages, and their stereo-structure, as well as the sugar moieties of the ginsenoside skeleton, represented a significant role in the inhibition of HRAR and RLAR. Additional, various modes of ginsenoside inhibition and molecular docking simulation indicated negative binding energies. It was also indicated that it has a strong capacity and high affinity to bind the active sites of enzymes. Further, active ginsenosides suppressed sorbitol accumulation in rat lenses under high-glucose conditions, demonstrating their potential to prevent sorbitol accumulation ex vivo. The findings of the present study suggest the potential of ginsenoside derivatives for use in the development of therapeutic or preventive agents for diabetic complications.


Assuntos
Aldeído Redutase , Ginsenosídeos , Animais , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Cinética , Simulação de Acoplamento Molecular , Ratos , Sorbitol , Relação Estrutura-Atividade
3.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684833

RESUMO

Cassia obtusifolia L., of the Leguminosae family, is used as a diuretic, laxative, tonic, purgative, and natural remedy for treating headache, dizziness, constipation, tophobia, and lacrimation and for improving eyesight. It is commonly used in tea in Korea. Various anthraquinone derivatives make up its main chemical constituents: emodin, chrysophanol, physcion, obtusifolin, obtusin, au rantio-obtusin, chryso-obtusin, alaternin, questin, aloe-emodin, gluco-aurantio-obtusin, gluco-obtusifolin, naphthopyrone glycosides, toralactone-9-ß-gentiobioside, toralactone gentiobioside, and cassiaside. C. obtusifolia L. possesses a wide range of pharmacological properties (e.g., antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and neuroprotective properties) and may be used to treat Alzheimer's disease, Parkinson's disease, and cancer. In addition, C. obtusifolia L. contributes to histamine release and antiplatelet aggregation. This review summarizes the botanical, phytochemical, and pharmacological features of C. obtusifolia and its therapeutic uses.


Assuntos
Cassia/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Fitoterapia , Plantas Medicinais/química , Animais , Antraquinonas/química , Antraquinonas/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Etnofarmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Medicina Tradicional Coreana , Mosquitos Vetores/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Compostos Fitoquímicos/uso terapêutico , República da Coreia
4.
Molecules ; 26(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34946519

RESUMO

In the present study, we investigated the structure-activity relationship of naturally occurring hesperetin derivatives, as well as the effects of their glycosylation on the inhibition of diabetes-related enzyme systems, protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase. Among the tested hesperetin derivatives, hesperetin 5-O-glucoside, a single-glucose-containing flavanone glycoside, significantly inhibited PTP1B with an IC50 value of 37.14 ± 0.07 µM. Hesperetin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50 = 9.65 ± 0.01 µM). The most active flavanone hesperetin 5-O-glucoside suggested that the position of a sugar moiety at the C-5-position influences the PTP1B inhibition. It was observed that the ability to inhibit PTP1B is dependent on the nature, position, and number of sugar moieties in the flavonoid structure, as well as conjugation. In the kinetic study of PTP1B enzyme inhibition, hesperetin 5-O-glucoside led to mixed-type inhibition. Molecular docking studies revealed that hesperetin 5-O-glucoside had a higher binding affinity with key amino residues, suggesting that this molecule best fits the PTP1B allosteric site cavity. The data reported here support hesperetin 5-O-glucoside as a hit for the design of more potent and selective inhibitors against PTP1B in the search for a new anti-diabetic treatment.


Assuntos
Inibidores Enzimáticos/química , Hesperidina/análogos & derivados , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Hesperidina/química , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Relação Estrutura-Atividade
5.
Bull Environ Contam Toxicol ; 106(4): 707-713, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33527146

RESUMO

In this study, we determined the effect of manure application on net nitrification rates (NNRs), heavy metal concentrations (HMCs), and abundance of ammonia-oxidizing archaea (AOA)/bacteria (AOB), and nitrite-oxidizing bacteria (NOB) in soil. HMCs were measured by atomic absorption spectroscopy. Abundance of AOA, AOB, and NOB was enumerated by q-PCR. NNRs ranged from 2.8 to 14.7 mg kg-1 h-1 and were significantly (p < 0.05) increased in manure soils as compared to control soils. NNRs were affected by pH 7 and temperature 30°C. Cd, Fe and Pb concentrations were classified as excessively polluted, moderate contamination and slight pollution, respectively, in the manure soils. NNRs and concentrations of Fe and Pb were significantly (p < 0.00) positive correlated, but Cu and Cd were significantly (p < 0.00) negative correlated with NNRs. Application of manure significantly (p < 0.05) increased HMCs (Fe, Cu, and Pb), which have indirect and direct effects on NNRs and nitrifying bacteria.


Assuntos
Archaea , Metais Pesados , Amônia , Bactérias/genética , Esterco , Nitrificação , Oxirredução , Filogenia , Solo , Microbiologia do Solo
6.
Bioorg Chem ; 92: 103293, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31557622

RESUMO

Umbelliferone has been demonstrated to have a wide range of biological activities. However, the effect of incorporating a formyl moiety in the umbelliferone scaffold has not been investigated. In this paper, we investigated the inhibitory activity of six coumarins, namely umbelliferone (1), 6-formyl umbelliferone (2), 8-formyl umbelliferone (3), umbelliferone-6-carboxylic acid (4), esculetin (5), and scopoletin (6) against human monoamine oxidases (hMAOs), self-amyloid ß (Aß) aggregation, and lipid peroxidation. We found that all compounds had high selectivity for hMAO-A in comparison with hMAO-B. Among the compounds, 2 exhibited the highest hMAO inhibitory activity with an IC50 value of 3.23 µM for hMAO-A and 15.31 µM for hMAO-B. Enzyme kinetic analysis showed that 2 and 3 were competitive hMAO inhibitors. In silico hydrated molecular docking simulations revealed that the coumarins interacted with substrate-binding site residues of the enzymes and the isoalloxazine ring of FAD. In addition, formyl coumarins 2 and 3 significantly inhibited lipid peroxidation in rat brain homogenates and self-Aß25-35 aggregation compared to other derivatives. These represent the first experimental and modelling data for hMAO-A/B inhibition by umbelliferone derivatives. Together, the data suggest that introduction of a formyl moiety in the 7-hydroxycoumarin scaffold, especially at the 6 position, plays an important role in the inhibition of hMAOs, Aß self-aggregation, and lipid peroxidation. Umbelliferone derivative 2 is a promising therapeutic lead scaffold for developing anti-neuropsychiatric disorder drugs that function via selective hMAO-A inhibition.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peroxidação de Lipídeos/efeitos dos fármacos , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Umbeliferonas/farmacologia , Peptídeos beta-Amiloides/metabolismo , Angelica/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/isolamento & purificação , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Umbeliferonas/química , Umbeliferonas/isolamento & purificação
7.
Molecules ; 24(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683604

RESUMO

The bioactivity of ten traditional Korean Angelica species were screened by angiotensin-converting enzyme (ACE) assay in vitro. Among the crude extracts, the methanol extract of Angelica decursiva whole plants exhibited potent inhibitory effects against ACE. In addition, the ACE inhibitory activity of coumarins 1-5, 8-18 was evaluated, along with two phenolic acids (6, 7) obtained from A. decursiva. Among profound coumarins, 11-18 were determined to manifest marked inhibitory activity against ACE with IC50 values of 4.68-20.04 µM. Compounds 12, 13, and 15 displayed competitive inhibition against ACE. Molecular docking studies confirmed that coumarins inhibited ACE via many hydrogen bond and hydrophobic interactions with catalytic residues and zinc ion of C- and N-domain ACE that blocked the catalytic activity of ACE. The results derived from these computational and in vitro experiments give additional scientific support to the anecdotal use of A. decursiva in traditional medicine to treat cardiovascular diseases such as hypertension.


Assuntos
Angelica/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Cumarínicos/farmacologia , Peptidil Dipeptidase A/metabolismo , Inibidores da Enzima Conversora de Angiotensina/química , Cumarínicos/química , Cinética , Simulação de Acoplamento Molecular
8.
Bioorg Med Chem ; 25(15): 3964-3970, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576634

RESUMO

A wide range of pharmacological properties of Sargassum spp. extracts and isolated components have been recognized. Although individual meroterpenoids of Sargassum species have been reported to possess strong activity against Alzheimer's disease (AD), the active compounds of Sargassum serratifolium have not been fully explored. Therefore, we evaluated the anti-AD activity of S. serratifolium extract through enzyme inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Three meroterpenoids (sargahydroquinoic acid (1), sargachromenol (2) and sargaquinoic acid (3)) were isolated from S. serratifolium. These compounds showed moderate AChE inhibitory activity, but exhibited potent inhibitory activity against BChE and BACE1 (15.1, 9.4, and 10.4µM for BChE; 4.3, 6.9, and 12.5µM for BACE1, respectively). Kinetic study and molecular docking simulation of these compounds demonstrated that 1 and 3 interacted with both catalytic aspartyl residues and allosteric sites of BACE1, whereas 2 interacted with the allosteric site of BACE1. The results of the present study demonstrate that meroterpenoids from S. serratifolium might be beneficial in the treatment of AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/farmacologia , Sargassum/química , Terpenos/farmacologia , Sítio Alostérico , Catálise , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Terpenos/química
9.
Mar Drugs ; 15(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194348

RESUMO

Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales) is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, and ONOO--mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively). In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid) were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14-14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively). In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO--mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the prevention and treatment of type 2 diabetes.


Assuntos
Inibidores Enzimáticos/química , Hipoglicemiantes/química , Extratos Vegetais/química , Plastoquinona/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Sargassum/química , Animais , Organismos Aquáticos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Plastoquinona/farmacologia
10.
Molecules ; 22(10)2017 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-28946641

RESUMO

Coumarins, which have low toxicity, are present in some natural foods, and are used in various herbal remedies, have attracted interest in recent years because of their potential medicinal properties. In this study, we report the isolation of two natural coumarins, namely umbelliferone (1) and 6-formyl umbelliferone (2), from Angelica decursiva, and the synthesis of 8-formyl umbelliferone (3) from 1. We investigated the anti-Alzheimer disease (anti-AD) potential of these coumarins by assessing their ability to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Among these coumarins, 2 exhibited poor inhibitory activity against AChE and BChE, and modest activity against BACE1. Structure-activity relationship analysis showed that 2 has an aldehyde group at the C-6 position, and exhibited strong anti-AD activity, whereas the presence or absence of an aldehyde group at the C-8 position reduced the anti-AD activity of 3 and 1, respectively. In addition, 2 exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. A kinetic study revealed that 2 and 3 non-competitively inhibited BACE1. To confirm enzyme inhibition, we predicted the 3D structures of AChE and BACE1, and used AutoDock 4.2 to simulate binding of coumarins to these enzymes. The blind docking studies demonstrated that these molecules could interact with both the catalytic active sites and peripheral anionic sites of AChE and BACE1. Together, our results indicate that 2 has an interesting inhibitory activity in vitro, and can be used in further studies to develop therapeutic modalities for the treatment of AD.


Assuntos
Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Angelica/química , Ácido Aspártico Endopeptidases/metabolismo , Colinesterases/metabolismo , Butirilcolinesterase/metabolismo , Cumarínicos/química , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Umbeliferonas/química
11.
Molecules ; 22(1)2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28035984

RESUMO

The present work aims to evaluate the anti-diabetic potentials of 16 anthraquinones, two naphthopyrone glycosides, and one naphthalene glycoside from Cassia obtusifolia via inhibition against the protein tyrosine phosphatases 1B (PTP1B) and α-glucosidase. Among them, anthraquinones emodin and alaternin exhibited the highest inhibitory activities on PTP1B and α-glucosidase, respectively. Moreover, we examined the effects of alaternin and emodin on stimulation of glucose uptake by insulin-resistant human HepG2 cells. The results showed that alaternin and emodin significantly increased the insulin-provoked glucose uptake. In addition, our kinetic study revealed that alaternin competitively inhibited PTP1B, and showed mixed-type inhibition against α-glucosidase. In order to confirm enzyme inhibition, we predicted the 3D structure of PTP1B using Autodock 4.2 to simulate the binding of alaternin. The docking simulation results demonstrated that four residues of PTP1B (Gly183, Arg221, Ile219, Gly220) interact with three hydroxyl groups of alaternin and that the binding energy was negative (-6.30 kcal/mol), indicating that the four hydrogen bonds stabilize the open form of the enzyme and potentiate tight binding of the active site of PTP1B, resulting in more effective PTP1B inhibition. The results of the present study clearly demonstrate that C. obtusifolia and its constituents have potential anti-diabetic activity and can be used as a functional food for the treatment of diabetes and associated complications.


Assuntos
Cassia/química , Emodina/análogos & derivados , Inibidores de Glicosídeo Hidrolases/farmacologia , Glicosídeos/farmacologia , Hipoglicemiantes/farmacologia , Naftalenos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Emodina/farmacologia , Glucose/metabolismo , Células Hep G2 , Humanos , Resistência à Insulina/fisiologia , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Preparações de Plantas/farmacologia
12.
Bioorg Med Chem ; 23(13): 3126-34, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26003344

RESUMO

Three new serratene-type triterpenoids (1-3) and a new hydroxy unsaturated fatty acid (13) together with nine known compounds (4-12) were isolated from Lycopodiella cernua. The chemical structures were established using NMR, MS, and Mosher's method. Compound 13 showed the most potent inhibitory activity against acetylcholinesterase (AChE) with an IC50 value of 0.22µM. For butyrylcholinesterase (BChE) inhibitory activity, 5 showed the most potent activity with an IC50 value of 0.42µM. Compound 2 showed the most potent activity with an IC50 of 0.23µM for BACE-1 inhibitory activity. The kinetic activities were investigated to determine the type of enzyme inhibition involved. The types of AChE inhibition shown by compounds 4, 5, and 13 were mixed; BChE inhibition by 5 was competitive, while 2 and 6 showed mixed-types. In addition, molecular docking studies were performed to investigate the interaction of these compounds with the pocket sites of AChE. The docking results revealed that the tested inhibitors 3, 4, and 13 were stably present in several pocket domains of the AChE residue.


Assuntos
Acetilcolinesterase/química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Lycopodiaceae/química , Inibidores de Proteases/química , Triterpenos/química , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Domínio Catalítico , Inibidores da Colinesterase/isolamento & purificação , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/isolamento & purificação , Humanos , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Inibidores de Proteases/isolamento & purificação , Ligação Proteica , Relação Estrutura-Atividade , Triterpenos/isolamento & purificação
13.
J Nat Prod ; 78(1): 34-42, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25559759

RESUMO

As part of an ongoing search for new antidiabetic agents from medicinal plants, three new (2, 4, and 5) and two known selaginellin derivatives (1 and 3) were isolated from a methanol extract of Selaginella tamariscina. The structures of the new compounds were determined by spectroscopic data analysis. All isolates showed strong glucose uptake stimulatory effects in 3T3-L1 adipocyte cells at a concentration of 5 µM. Furthermore, these compounds were found to possess inhibitory effects on PTP1B enzyme activity with IC50 values ranging from 4.6 ± 0.1 to 21.6 ± 1.5 µM. Compound 2 showed the greatest potency, with an IC50 value of 4.6 ± 0.1 µM, when compared with the positive control (ursolic acid, IC50 = 3.5 ± 0.1 µM). Therefore, these selaginellin derivatives may have value as new lead compounds for the development of agents against type 2 diabetes.


Assuntos
Compostos de Bifenilo/isolamento & purificação , Compostos de Bifenilo/farmacologia , Cicloexanonas/isolamento & purificação , Cicloexanonas/farmacologia , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Selaginellaceae/química , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Compostos de Bifenilo/química , Cicloexanonas/química , Hipoglicemiantes/química , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Plantas Medicinais/química , Triterpenos/farmacologia , Ácido Ursólico
14.
Phytother Res ; 29(10): 1540-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26172104

RESUMO

Phytochemical study on the corks of Euonymus alatus resulted in the isolation of a novel 3-hydroxycoumarinflavanol (23), along with ten triterpenoids (1-10), ten phenolic derivatives (11-20), and two flavonoid glycosides (21 and 22). Their structures were determined by extensive 1D and 2D-nuclear magnetic resonance spectroscopic and mass spectrometry data analysis. Furthermore, their inhibitory effects against the protein tyrosine phosphatases 1B (PTP1B) and α-glucosidase enzyme activity were evaluated. Compounds 6, 7, 9, 15, 19, and 23 were non-competitive inhibitors, exhibiting most potency with IC50 values ranging from 5.6 ± 0.9 to 18.4 ± 0.3 µm, against PTP1B. Compound 3 (competitive), compounds 5 and 15 (mixed-competitive) displayed potent inhibition with IC50 values of 15.1 ± 0.7, 23.6 ± 0.6 and 14.8 ± 0.9 µm, respectively. Moreover, compounds 15, 20, and 23 exhibited potent inhibition on α-glucosidase with IC50 values of 10.5 ± 0.8, 9.5 ± 0.6, and 9.1 ± 0.5 µm, respectively. Thus, these active ingredients may have value as new lead compounds for the development of new antidiabetic agents.


Assuntos
Inibidores Enzimáticos/farmacologia , Euonymus , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Flavonoides/química , Hipoglicemiantes/farmacologia , Espectroscopia de Ressonância Magnética , Fenóis/química , alfa-Glucosidases/metabolismo
15.
J Agric Food Chem ; 72(13): 7203-7218, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518258

RESUMO

Diabetes complications are associated with aldose reductase (AR) and advanced glycation end products (AGEs). Using bioassay-guided isolation by column chromatography, 10 flavonoids and one coumarin were isolated from Poncirus trifoliata Rafin and tested in vitro for an inhibitory effect against human recombinant AR (HRAR) and rat lens AR (RLAR). Prunin, narirutin, and naringin inhibited RLAR (IC50 0.48-2.84 µM) and HRAR (IC50 0.68-4.88 µM). Docking simulations predicted negative binding energies and interactions with the RLAR and HRAR binding pocket residues. Prunin (0.1 and 12.5 µM) prevented the formation of fluorescent AGEs and nonfluorescent Nε-(carboxymethyl) lysine (CML), as well as the fructose-glucose-mediated protein glycation and oxidation of human serum albumin (HSA). Prunin suppressed the formation of the ß-cross-amyloid structure of HSA. These results indicate that prunin inhibits oxidation-dependent protein damage, AGE formation, and AR, which may help prevent diabetes complications.


Assuntos
Complicações do Diabetes , Cristalino , Florizina/análogos & derivados , Poncirus , Ratos , Humanos , Animais , Glucose/farmacologia , Poncirus/metabolismo , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Albumina Sérica Humana , Aldeído Redutase/metabolismo , Frutose
16.
J Agric Food Chem ; 71(30): 11476-11490, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37384918

RESUMO

Pomegranate (Punica granatum L.) is associated with numerous health benefits due to its high levels of antioxidant polyphenolic substances. Since pomegranate extract has been shown to inhibit angiotensin-converting enzyme (ACE), the potential inhibitory effect of most of its main constituents against ACE is unknown. Therefore, we tested the activities of 24 major compounds, the majority of which significantly inhibited ACE. Notably, pedunculagin, punicalin, and gallagic acid were the most effective ACE inhibitors with IC50 values of 0.91, 1.12, and 1.77 µM, respectively. As demonstrated in molecular docking studies, compounds block ACE by forming multiple hydrogen bonds and hydrophobic interactions with catalytic residues and zinc ions in ACE's C- and N-domains, consequently inhibiting ACE's catalytic activity. Also, the most active pedunculagin stimulated nitric oxide (NO) production, activated the endothelial nitric oxide synthase enzyme (eNOS), and significantly increased eNOS protein expression levels up to 5.3-fold in EA.hy926 cells. Furthermore, pedunculagin increased in cellular calcium (Ca2+) concentration promoted eNOS enzyme activation and reduced the production of reactive oxygen species (ROS). In addition, the active compounds improved glucose uptake in insulin-resistant C2C12 skeletal muscle cells in a dose-dependent manner. The results of these computational, in vitro, and cellular experiments provide further evidence to the traditional medicine that involves using pomegranates to treat cardiovascular diseases like hypertension.


Assuntos
Hipertensão , Punica granatum , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Acoplamento Molecular , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Peptidil Dipeptidase A/metabolismo , Antioxidantes/química
17.
ACS Chem Neurosci ; 14(10): 1859-1869, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37116219

RESUMO

Cav3.2 channels play an important role in the afferent nociceptive pathway, which is responsible for both physiological and pathological pain transmission. Cav3.2 channels are upregulated during neuropathic pain or peripheral inflammation in part due to an increased association with the deubiquitinase USP5. In this study, we investigated nine naturally occurring flavonoid derivatives which we tested for their abilities to inhibit transiently expressed Cav3.2 channels and their interactions with USP5. Icariside II (ICA-II), one of the flavonols studied, inhibited the biochemical interactions between USP5 and Cav3.2 and concomitantly and effectively blocked Cav3.2 channels. Molecular docking analysis predicts that ICA-II binds to the cUBP domain and the Cav3.2 interaction region. In addition, ICA-II was predicted to interact with residues in close proximity to the Cav3.2 channel's fenestrations, thus accounting for the observed blocking activity. In mice with inflammatory and neuropathic pain, ICA-II inhibited both phases of the formalin-induced nocifensive responses and abolished thermal hyperalgesia induced by injection of complete Freund's adjuvant (CFA) into the hind paw. Furthermore, ICA-II produced significant and long-lasting thermal anti-hyperalgesia in female mice, whereas Cav3.2 null mice were resistant to the action of ICA-II. Altogether, our data show that ICA-II has analgesic activity via an action on Cav3.2 channels.


Assuntos
Canais de Cálcio Tipo T , Neuralgia , Feminino , Camundongos , Animais , Canais de Cálcio Tipo T/metabolismo , Simulação de Acoplamento Molecular , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Flavonoides , Flavonóis , Camundongos Knockout , Proteases Específicas de Ubiquitina/metabolismo
18.
Antioxidants (Basel) ; 12(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37107213

RESUMO

Morus bombycis has a long history of usage as a treatment for metabolic diseases, especially, diabetes mellitus (DM). Thus, we aimed to isolate and evaluate bioactive constituents derived from M. bombycis leaves for the treatment of DM. According to bioassay-guided isolation by column chromatography, eight compounds were obtained from M. bombycis leaves: two phenolic compounds, p-coumaric acid (1) and chlorogenic acid methyl ester (2), one stilbene, oxyresveratrol (3), two stilbene dimers, macrourin B (4) and austrafuran C (6), one 2-arylbenzofuran, moracin M (5), and two Diels-Alder type adducts, mulberrofuran F (7) and chalcomoracin (8). Among the eight isolated compounds, the anti-DM activity of 3-8 (which possess chemotaxonomic significance in Morus species) was evaluated by inhibition of α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation as well as by scavenging peroxynitrite (ONOO-), which are crucial therapeutic targets of DM and its complications. Compounds 4 and 6-8 significantly inhibited α-glucosidase, PTP1B, and HRAR enzymes with mixed-type and non-competitive-type inhibition modes. Furthermore, the four compounds had low negative binding energies in both enzymes according to molecular docking simulation, and compounds 3-8 exhibited strong antioxidant capacity by inhibiting AGE formation and ONOO- scavenging. Overall results suggested that the most active stilbene-dimer-type compounds (4 and 6) along with Diels-Alder type adducts (7 and 8) could be promising therapeutic and preventive resources against DM and have the potential to be used as antioxidants, anti-diabetic agents, and anti-diabetic complication agents.

19.
Chem Biol Interact ; 376: 110452, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933777

RESUMO

Artemisia is one of the largest genera in the plant family Asteraceae and has long been used in traditional medicine for its antitussive, analgesic, antihypertensive, antitoxic, antiviral, antimalarial, and anti-inflammatory properties. However, the anti-diabetic activity of Artemisia montana has not been broadly studied. The goal of this study was to determine whether extracts of the aerial parts of A. montana and its main constituents inhibit protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase activities. We isolated nine compounds from A. montana including ursonic acid (UNA) and ursolic acid (ULA), which significantly inhibited PTP1B with IC50 values of 11.68 and 8.73 µM, respectively. In addition, UNA showed potent inhibitory activity against α-glucosidase (IC50 = 61.85 µM). Kinetic analysis of PTP1B and α-glucosidase inhibition revealed that UNA was a non-competitive inhibitor of both enzymes. Docking simulations of UNA demonstrated negative binding energies and close proximity to residues in the binding pockets of PTP1B and α-glucosidase. Molecular docking simulations between UNA and human serum albumin (HSA) revealed that UNA binds tightly to all three domains of HSA. Furthermore, UNA significantly inhibited fluorescent AGE formation (IC50 = 4.16 µM) in a glucose-fructose-induced HSA glycation model over the course of four weeks. Additionally, we investigated the molecular mechanisms underlying the anti-diabetic effects of UNA in insulin-resistant C2C12 skeletal muscle cells and discovered that UNA significantly increased glucose uptake and decreased PTP1B expression. Further, UNA increased GLUT-4 expression level by activating the IRS-1/PI3K/Akt/GSK-3 signaling pathway. These findings clearly demonstrate that UNA from A. montana shows great potential for treatment of diabetes and its complications.


Assuntos
Artemisia , Diabetes Mellitus , Insulinas , Humanos , Lactente , Hipoglicemiantes/farmacologia , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Cinética , Artemisia/química , Artemisia/metabolismo , Simulação de Acoplamento Molecular , Quinase 3 da Glicogênio Sintase/metabolismo , Montana , Diabetes Mellitus/tratamento farmacológico , Transdução de Sinais , Proteína Tirosina Fosfatase não Receptora Tipo 1
20.
Br J Pharmacol ; 180(12): 1616-1633, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36647671

RESUMO

BACKGROUND AND PURPOSE: Cannabinoids are a promising therapeutic avenue for chronic pain. However, clinical trials often fail to report analgesic efficacy of cannabinoids. Inhibition of voltage gate calcium (Cav ) channels is one mechanism through which cannabinoids may produce analgesia. We hypothesized that cannabinoids and cannabinoid receptor agonists target different types of Cav channels through distinct mechanisms. EXPERIMENTAL APPROACH: Electrophysiological recordings from tsA-201 cells expressing either Cav 3.2 or Cav 2.2 were used to assess inhibition by HU-210 or cannabidiol (CBD) in the absence and presence of the CB1 receptor. Homology modelling assessed potential interaction sites for CBD in both Cav 2.2 and Cav 3.2. Analgesic effects of CBD were assessed in mouse models of inflammatory and neuropathic pain. KEY RESULTS: HU-210 (1 µM) inhibited Cav 2.2 function in the presence of CB1 receptor but had no effect on Cav 3.2 regardless of co-expression of CB1 receptor. By contrast, CBD (3 µM) produced no inhibition of Cav 2.2 and instead inhibited Cav 3.2 independently of CB1 receptors. Homology modelling supported these findings, indicating that CBD binds to and occludes the pore of Cav 3.2, but not Cav 2.2. Intrathecal CBD alleviated thermal and mechanical hypersensitivity in both male and female mice, and this effect was absent in Cav 3.2 null mice. CONCLUSION AND IMPLICATIONS: Our findings reveal differential modulation of Cav 2.2 and Cav 3.2 channels by CB1 receptors and CBD. This advances our understanding of how different cannabinoids produce analgesia through action at different voltage-gated calcium channels and could influence the development of novel cannabinoid-based therapeutics for treatment of chronic pain.


Assuntos
Canabidiol , Canabinoides , Dor Crônica , Masculino , Feminino , Camundongos , Animais , Canabidiol/farmacologia , Canais de Cálcio , Dor Crônica/tratamento farmacológico , Analgésicos/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA