Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Toxicol ; 6: 1474792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359637

RESUMO

Glyphosate is a chemical compound derived from glycine, marketed as a broad-spectrum herbicide, and represents one of the most widely used pesticides in the world. For a long time, it was assumed that glyphosate was harmless, either due to its selective enzymatic acting method on plants, and because commercial formulations were believed to contain only inert chemicals. Glyphosate is widely spread in the environment, the general population is daily exposed to it via different routes, including the consumption of both plant, and non-plant based foods. Glyphosate has been detected in high amounts in workers' urine, but has been detected likewise in bodily fluids, such as blood and maternal milk, and also in 60%-80% of general population, including children. Considering its massive presence, daily exposure to glyphosate could be considered a health risk for humans. Indeed, in 2015, the IARC (International Agency for Research on Cancer) classified glyphosate and its derivatives in Group 2A, as probable human carcinogens. In 2022, nevertheless, EFSA (European Food Safety Authority) stated that the available data did not provide sufficient evidence to prove the mutagenic/carcinogenic effects of glyphosate. Therefore, the European Commission (EC) decided to renew the approval of glyphosate for another 10 years. The purpose of this review is to examine the scientific literature, focusing on potential risks to human health arising from exposure to glyphosate, its metabolites and its commercial products (e.g., Roundup®), with particular regard to its mutagenic and carcinogenic potential and its effects as endocrine disrupter (ED) especially in the human reproductive system.

2.
Front Vet Sci ; 11: 1459714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39376921

RESUMO

Introduction: This study examined the efficacy of a therapy based on a combination of Platelet Rich Plasma and hydroxyapatite nanoparticles in a severe clinical case involving a young Rottweiler with a complex spiral fracture of the tibia. Method: Following a worsening of the lesion after traditional surgical intervention, the subject was treated with the combined therapy. X-rays were taken at the following stages: immediately post-surgery, four weeks post-surgery, and 10 days post-treatment. Fracture gap and callus density measurements were obtained using ImageJ analysis, allowing for a detailed quantitative assessment of bone regeneration over time. Results: Post-operative radiographs indicated a clinical worsening of the fracture, revealing an increased fracture gap due to bone loss. However, significant improvements were observed ten days following the treatment, with a marked reduction in fracture gaps and increased callus density. These results demonstrated a notable acceleration in bone healing and callus formation compared to typical recovery times for similar lesions. Conclusion: The method showed potential for enhancing osteogenic regeneration, facilitating faster healing of serious orthopedic injuries compared to traditional methods.

3.
Biomedicines ; 11(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371697

RESUMO

Cartilage injury defects in animals and humans result in the development of osteoarthritis and the progression of joint deterioration. Cell isolation from equine hyaline cartilage and evaluation of their ability to repair equine joint cartilage injuries establish a new experimental protocol for an alternative approach to osteochondral lesions treatment. Chondrocytes (CCs), isolated from the autologous cartilage of the trachea, grown in the laboratory, and subsequently arthroscopically implanted into the lesion site, were used to regenerate a chondral lesion of the carpal joint of a horse. Biopsies of the treated cartilage taken after 8 and 13 months of implantation for histological and immunohistochemical evaluation of the tissue demonstrate that the tissue was still immature 8 months after implantation, while at 13 months it was organized almost similarly to the original hyaline cartilage. Finally, a tissue perfectly comparable to native articular cartilage was detected 24 months after implantation. Histological investigations demonstrate the progressive maturation of the hyaline cartilage at the site of the lesion. The hyaline type of tracheal cartilage, used as a source of CCs, allows for the repair of joint cartilage injuries through the neosynthesis of hyaline cartilage that presents characteristics identical to the articular cartilage of the original tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA