Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 48(1): 273-283, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36074199

RESUMO

Echinops spinosus (ES) is a medicinal plant with a wide range of pharmacological and biological effects. It is a medicinal herb having a variety of therapeutic characteristics, including antioxidant, anti-inflammatory, and antibacterial capabilities. The primary goal of this research is to investigate the neuroprotective and anticonvulsant characteristics of E. spinosa extract (ESE) against pentylenetetrazole (PTZ)-induced acute seizures. Negative control rats, ESE treatment rats, PTZ acute seizure model rats, ESE + PTZ rats, and Diazepam + PTZ rats were used in the study. The rats were given a 7-day treatment. ESE pretreatment elevated the latency to seizure onset and lowered seizure duration after PTZ injection. By reducing Bax levels and enhancing antiapoptotic Bcl-2 production, ESE prevented the release of interleukin-1ß, tumor necrosis factor-α, and cyclooxygenase-2, as well as preventing hippocampal cell death after PTZ injection. ESE corrected the PTZ-induced imbalance in gamma-aminobutyric acid levels and increased the enzyme activity of Na+/K+-ATPase. Echinops spinosus is a potent neuromodulatory, antioxidant, antiinflammatory, and antiapoptotic plant that could be employed as a natural anticonvulsant in the future.


Assuntos
Fármacos Neuroprotetores , Plantas Medicinais , Ratos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Pentilenotetrazol/toxicidade , Fármacos Neuroprotetores/efeitos adversos , Tenrecidae , Antioxidantes/efeitos adversos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Modelos Animais de Doenças
2.
An Acad Bras Cienc ; 92(2): e20191107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32520220

RESUMO

Eimeriosis is caused by a protozoan parasite of the genus Eimeria and infection affecting most domestic animal species. The aim of this research was to comprehend the impact of selenium nanoparticles (SeNPs) on eimeriosis induced by Eimeria papillata in mouse jejunum, and how they work as antioxidants and anti-apoptotic agents against eimeriosis. The numbers of meronts, gamonts, and developing oocysts of E. papillata reduced after the infected mice were treated with the SeNPs. The levels of malondialdehyde (MDA), nitric oxide (NO), and other oxidative stress-related molecules, such as glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD), were assayed. E. papillata was able to change the redox status of the jejunal cells; this was confirmed by the elevation of the MDA and NO levels, and the decrease of the GSH levels and the activities of the antioxidant enzymes CAT and SOD. SeNP treatment significantly reversed this disturbance of the redox status. The expression levels of the apoptotic markers Bax and caspase-3 in the jejunal samples were evaluated using qRT-PCR. The SeNPs decreased the Bax and caspase-3 expression after being administered to the E. papillata-infected mice. Collectively, the SeNPs demonstrated antioxidant and anti-apoptotic activities against murine eimeriosis.


Assuntos
Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Coccidiose/tratamento farmacológico , Nanopartículas/administração & dosagem , Selênio/administração & dosagem , Animais , Coccidiose/parasitologia , Coccidiose/patologia , Modelos Animais de Doenças , Camundongos
3.
Front Microbiol ; 15: 1345478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559346

RESUMO

Antimicrobial resistance is one of the largest medical challenges because of the rising frequency of opportunistic human microbial infections across the globe. This study aimed to extract chitosan from the exoskeletons of dead bees and load it with bee venom (commercially available as Apitoxin [Api]). Then, the ionotropic gelation method would be used to form nanoparticles that could be a novel drug-delivery system that might eradicate eight common human pathogens (i.e., two fungal and six bacteria strains). It might also be used to treat the human colon cancer cell line (Caco2 ATCC ATP-37) and human liver cancer cell line (HepG2ATCC HB-8065) cancer cell lines. The x-ray diffraction (XRD), Fourier transform infrared (FTIR), and dynamic light scattering (DLS) properties, ζ-potentials, and surface appearances of the nanoparticles were evaluated by transmission electron microscopy (TEM). FTIR and XRD validated that the Api was successfully encapsulated in the chitosan nanoparticles (ChB NPs). According to the TEM, the ChB NPs and the ChB NPs loaded with Apitoxin (Api@ChB NPs) had a spherical shape and uniform size distribution, with non-aggregation, for an average size of approximately 182 and 274 ± 3.8 nm, respectively, and their Zeta potential values were 37.8 ± 1.2 mV and - 10.9 mV, respectively. The Api@ChB NPs had the greatest inhibitory effect against all tested strains compared with the ChB NPs and Api alone. The minimum inhibitory concentrations (MICs) of the Api, ChB NPs, and Api@ChB NPs were evaluated against the offer mentioned colony forming units (CFU/mL), and their lowest MIC values were 30, 25, and 12.5 µg mL-1, respectively, against Enterococcus faecalis. Identifiable morphological features of apoptosis were observed by 3 T3 Phototox software after Api@ChB NPs had been used to treat the normal Vero ATCC CCL-81, Caco2 ATCC ATP-37, and HepG2 ATCC HB-8065 cancer cell lines for 24 h. The morphological changes were clear in a concentration-dependent manner, and the ability of the cells was 250 to 500 µg mL-1. These results revealed that Api@ChB NPs may be a promising natural nanotreatment for common human pathogens.

4.
Front Microbiol ; 14: 1142646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143540

RESUMO

In recent investigations, secondary bacterial infections were found to be strongly related to mortality in COVID-19 patients. In addition, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria played an important role in the series of bacterial infections that accompany infection in COVID-19. The objective of the present study was to investigate the ability of biosynthesized silver nanoparticles from strawberries (Fragaria ananassa L.) leaf extract without a chemical catalyst to inhibit Gram-negative P. aeruginosa and Gram-positive Staph aureus isolated from COVID-19 patient's sputum. A wide range of measurements was performed on the synthesized AgNPs, including UV-vis, SEM, TEM, EDX, DLS, ζ -potential, XRD, and FTIR. UV-Visible spectral showed the absorbance at the wavelength 398 nm with an increase in the color intensity of the mixture after 8 h passed at the time of preparation confirming the high stability of the FA-AgNPs in the dark at room temperature. SEM and TEM measurements confirmed AgNPs with size ranges of ∼40-∼50 nm, whereas the DLS study confirmed their average hydrodynamic size as ∼53 nm. Furthermore, Ag NPs. EDX analysis showed the presence of the following elements: oxygen (40.46%), and silver (59.54%). Biosynthesized FA-AgNPs (ζ = -17.5 ± 3.1 mV) showed concentration-dependent antimicrobial activity for 48 h in both pathogenic strains. MTT tests showed concentration-dependent and line-specific effects of FA-AgNPs on cancer MCF-7 and normal liver WRL-68 cell cultures. According to the results, synthetic FA-AgNPs obtained through an environmentally friendly biological process are inexpensive and may inhibit the growth of bacteria isolated from COVID-19 patients.

5.
Saudi J Biol Sci ; 29(2): 1234-1238, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197790

RESUMO

Magnesium nanoparticles have been the focus of study over the past few years because of its functionality in the body. Assessment of the impact of magnesium oxide nanoparticles (MgNPs) on eimeriosis has yet to be conducted. The goal of this study was to see how MgNPs affected the parasite Eimeria papillata infected jejunum. To induce eimeriosis, mice were infected with sporulated oocysts. For treatment, 5 mg / Kg MgNPs was used for 5 consecutive days. The infection reduced the number of intestinal goblet cells and their associated genes MUC2 and MUC4, as well as increasing oxidative damage in the jejunum. MgNPs significantly reduced the oocyst production in the feces by about 77 %. After treatment, the number of goblet cells per villus increased from 4.17% to 7.40.6%. Moreover, the MgNPs were able to upregulate the expression of MUC2 and MUC4-mRNA. MgNPs significantly increased the activity of catalase and superoxide dismutase, as well as the extent of glutathione, by day 5 after infection with the parasite. On contrary, MgNPs decreased the level of malondialdehyde and nitric oxide. The findings suggested that MgNPs could be an effective anti-eimeriosis agent due to their anti-eimerial and anti-oxidant roles, as well as the regulatory effect on the goblet cell mucin genes in the jejunum of mice.

6.
Front Microbiol ; 13: 833520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387074

RESUMO

Surra is a parasitic disease caused by the eukaryotic, unicellular hemoprotozoan, Trypanosoma evansi, which affects the development of animal production and is widespread among both domestic and wild animals. As such, in this research, we studied the antiparasitic activity and the ameliorative impact of Eucalyptus camaldulensis leaf extracts (ELE) against T. evansi-induced brain injury and spleen immune response in mice. As a result, we found that ELE decreased the amount of trypanosomes in the blood and improved the weight loss caused by infection. In addition, ELE reduced the parasite-induced brain and spleen histopathological damage. The parasite affected the levels of dopamine and serotonin, but after treatment with ELE, their concentrations significantly decreased to 154 ± 7 and 258 ± 11 µg/g, respectively. We clearly observed the antioxidant activity of ELE because of its ability to increase the induced change in the brain's total antioxidant capacity and the nitric oxide level. The histopathological changes in the spleen also improved after ELE application. Based on our results, we concluded that ELE possesses antitrypanosomal antioxidant and protective effects in the brains of mice infected with T. evansi. Additional phytochemical screening and molecular studies are required to understand the mechanism underlying the effect of ELE.

7.
Saudi J Biol Sci ; 29(5): 3403-3407, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844435

RESUMO

Coccidiosis affects both domestic and wild animals and negatively impacting industries worldwide. Medicinal plants are widely used against parasites. Using infected mice with Eimeria papillata, we assessed the anticoccidial impact of Zingiber officinale extract (ZE). The animals in the first group were just given distilled water, while the animals in the second group were given ZE. The parasite's oocysts were infected into the third and fourth groups. The fourth group was given ZE for five days. The oocysts in mice faeces were reduced after treatment with ZE. The total parasitic stages were reduced after treatments by about 50%. Also, gamonts, meronts and oocysts inside the jejunum were decreased after treatment with ZE. The infection caused hypoplasia of goblet cells of jejunum. ZE was able to ameliorate the goblet cells decrease. Behavioral response of animals to infection and treatment was investigated. All of these improvements could be attributed to the existence of active chemical classes of substances identified using infrared spectroscopy. Additional experiments are required to identify the phytochemical compounds in ZE and to understand their fighting mechanism against the parasite.

8.
Int J Nanomedicine ; 13: 1993-2003, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662312

RESUMO

BACKGROUND: Although elemental selenium has been found to be effective against Eimeria, no study has yet investigated the effects of selenium nanoparticles (SeNPs) on the Eimeria parasite. The aim of this study, therefore, was to evaluate the ameliorative effect of SeNPs compared with elemental selenium on mice jejunum infected with sporulated oocysts of Eimeria papillata. METHODS: The mice were divided into 4 groups, with the first being the non-infected, control group, and the second, third, and fourth groups being orally inoculated with 1,000 sporulated oocysts of E. papillata. The third and fourth groups also received, respectively, an oral dose of 0.1 mg/kg sodium selenite and 0.5 mg/kg SeNPs daily for 5 consecutive days. RESULTS: The infection induced severe histopathological jejunal damage, reflected in the form of destroyed jejunal mucosa, increased jejunal oxidative damage, a reduction in the number of jejunal goblet cells, and increased production of pro-inflammatory cytokines, quantified by real-time polymerase chain reaction. Treatment of mice with SeNPs significantly decreased the oocyst output in the feces by ~80%. Furthermore, the number of parasitic stages counted in stained jejunal paraffin sections was significantly decreased after the mice were treated with SeNPs. In addition, the number of goblet cells increased from 42.6±7.3 to 95.3±8.5 cells/10 villus-crypt units after treatment. By day 5 post-infection with E. papillata, SeNPs could be seen to have significantly increased the activity of glutathione peroxidase from 263±10 to 402.4±9 mU/mL. Finally, SeNPs were able to regulate the gene expression of mucin 2, interleukin 1ß, interleukin 6, interferon-γ, and tumor necrosis factor α in the jejunum of mice infected with E. papillata. CONCLUSION: The results collectively showed that SeNPs are more effective than sodium selenite with regard to their anti-coccidial, anti-oxidant, and anti-inflammatory role against eimeriosis induced in the jejunum of mice.


Assuntos
Antiprotozoários/farmacologia , Coccidiose/tratamento farmacológico , Jejuno/parasitologia , Mucina-2/genética , Selênio/farmacologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Antiprotozoários/administração & dosagem , Coccidiose/genética , Citocinas/metabolismo , Eimeria/efeitos dos fármacos , Eimeria/patogenicidade , Enterite/tratamento farmacológico , Enterite/parasitologia , Fezes , Expressão Gênica/efeitos dos fármacos , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/patologia , Jejuno/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/química , Oocistos/patogenicidade , Selênio/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA