Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 926699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967878

RESUMO

Chagas disease (CD) affects at least 6 million people in 21 South American countries besides several thousand in other nations all over the world. It is estimated that at least 14,000 people die every year of CD. Since vaccines are not available, chemotherapy remains of pivotal relevance. About 30% of the treated patients cannot complete the therapy because of severe adverse reactions. Thus, the search for novel drugs is required. Here we tested the benznidazole (BZ) combination with the repositioned drug disulfiram (DSF) and its derivative diethyldithiocarbamate (DETC) upon Trypanosoma cruzi in vitro and in vivo. DETC-BZ combination was synergistic diminishing epimastigote proliferation and enhancing selective indexes up to over 10-fold. DETC was effective upon amastigotes of the BZ- partially resistant Y and the BZ-resistant Colombiana strains. The combination reduced proliferation even using low concentrations (e.g., 2.5 µM). Scanning electron microscopy revealed membrane discontinuities and cell body volume reduction. Transmission electron microscopy revealed remarkable enlargement of endoplasmic reticulum cisternae besides, dilated mitochondria with decreased electron density and disorganized kinetoplast DNA. At advanced stages, the cytoplasm vacuolation apparently impaired compartmentation. The fluorescent probe H2-DCFDA indicates the increased production of reactive oxygen species associated with enhanced lipid peroxidation in parasites incubated with DETC. The biochemical measurement indicates the downmodulation of thiol expression. DETC inhibited superoxide dismutase activity on parasites was more pronounced than in infected mice. In order to approach the DETC effects on intracellular infection, peritoneal macrophages were infected with Colombiana trypomastigotes. DETC addition diminished parasite numbers and the DETC-BZ combination was effective, despite the low concentrations used. In the murine infection, the combination significantly enhanced animal survival, decreasing parasitemia over BZ. Histopathology revealed that low doses of BZ-treated animals presented myocardial amastigote, not observed in combination-treated animals. The picrosirius collagen staining showed reduced myocardial fibrosis. Aminotransferase de aspartate, Aminotransferase de alanine, Creatine kinase, and urea plasma levels demonstrated that the combination was non-toxic. As DSF and DETC can reduce the toxicity of other drugs and resistance phenotypes, such a combination may be safe and effective.


Assuntos
Doença de Chagas , Tripanossomicidas , Animais , Doença de Chagas/parasitologia , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Resistência a Medicamentos , Humanos , Camundongos , Nitroimidazóis , Transaminases/uso terapêutico , Tripanossomicidas/farmacologia
2.
PLoS Negl Trop Dis ; 15(7): e0009534, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288905

RESUMO

BACKGROUND: Chagas Disease (CD) affects 6-7 million people worldwide and is related to poverty-promoting conditions. Chronic asymptomatic cases are mostly invisible to health systems. Aiming (1) to translate CD discoveries into education/information practices to raise alertness and empowerment of affected people; and (2) to perform an active search of CD cases, articulating intersectoral actions to improve the access of infected people to the local health service for the treatment of CD; our research group developed and tested under field conditions as innovative social technology: an itinerant education interdisciplinary setting named "Chagas Express XXI" (CE21). METHODOLOGY: CE21 was created as an "imaginary train" with ~40 ArtScience workshops, games, laboratory activities and conversation circles. An entry/exit plus six activity modules combined associations of affected people, microscopic observations, One Health education, and wellness activities. CE21 was conceived as a social technology, since all the processes were co-created with CD patients and inter-sector local partners. Descriptive statistics showed quantitative data collected throughout the expeditions (CD knowledge, serological results). Qualitative data accessed the public perceptions about the education activities. PRINCIPAL FINDINGS: CE21 was exhibited in local educational institutions (schools, universities) in four cities, engaging 2,117 people that evaluated the 41 activities carried out. Citizens and health professionals enjoyed acquisition of information related to blood, parasites, vectors, reservoirs, environmental changes, and social determinants of CD. Further, local legacies of 600 participants volunteer for health promotion groups and CD associations, local empowerment groups to fight for better health conditions, and 05 mural paintings. We observed that 81% of the participants ignored the possibility of treating CD while 52% of the participants requested a blood test for CD showing seropositivity in 20% of them. CONCLUSIONS: CE21 is a social technology potentially useful for health and science education and active search of asymptomatic CD chronic cases. Moreover, this technology may be adapted to understand and to cooperate in other potentially epidemic situations, especially NTDs related.


Assuntos
Doença de Chagas/epidemiologia , Educação em Saúde , Promoção da Saúde/métodos , Ciência/educação , Adulto , Idoso , Brasil/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tecnologia , Adulto Jovem
3.
Biochem Pharmacol ; 180: 114191, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32777278

RESUMO

The protozoan parasite Leishmania braziliensis is a major causative agent of the neglected tropical diseases Cutaneous and Mucocutaneous Leishmaniases in the New World. There are no vaccines to prevent the infection and the treatment relies on few drugs that often display high toxicity and costs. Thus, chemotherapeutic alternatives are required. Histone Deacetylases (HDACs) are epigenetic enzymes involved in the control of chromatin structure. In this work, we tested an in-house library of 78 hydroxamic acid derivatives as putative inhibitors of L. braziliensis HDACs (HDACi). The compounds were evaluated in relation to the toxicity to the host cell macrophage and to the leishmanicidal effect against L. braziliensis during in vitro infection. Eight HDACi showed significant leishmanicidal effects and the top 5 compounds showed effective concentrations (EC50) in the range of 4.38 to 10.21 µM and selectivity indexes (SI) from of 6 to 21.7. Analyses by Transmission Electron Microscopy (TEM) indicated induction of apoptotic cell death of L. braziliensis amastigotes with a necrotic phenotype. An altered chromatin condensation pattern and cellular disorganization of intracellular amastigotes was also observed. A tight connection between the mitochondrion and nuclear protrusions, presumably of endoplasmic reticulum origin, was found in parasites but not in the host cell. In flow cytometry (FC) analyses, HDACi promoted parasite cell cycle arrest in the G2-M phase and no changes were found in macrophages. In addition, the direct effect of HDACi against the promastigotes showed apoptosis as the main mechanism of cell death. The FC results corroborate the TEM analyses indicating that the HDACi lead to changes in the cell cycle and induction of apoptosis of L. braziliensis. The production of nitric oxide by the infected macrophages was not altered after treatment with the top 5 compounds. Taken together, our results evidenced new HDACi as promising agents for the development of new treatments for American Tegumentary Leishmaniasis caused by L. braziliensis.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/enzimologia , Leishmaniose Cutânea/enzimologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Leishmania braziliensis/ultraestrutura , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/ultraestrutura , Camundongos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Células RAW 264.7
4.
Eur J Med Chem ; 183: 111688, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542714

RESUMO

Leishmania braziliensis is one of the pathogenic agents of cutaneous and mucocutanoeous leishmaniasis. There are no validated vaccines to prevent the infection and the treatment relies on drugs that often present severe side effects, which justify the efforts to find new potential antileishmanial drugs. An alternative to promote the discovery of new drugs would be the association of different chemical groups of bioactive compounds. Here we describe the synthesis and bioactivity evaluation against L. braziliensis of cinnamic acid derivatives possessing isobenzofuranone and 1,2,3-triazole functionalities. We tested 25 compounds at 10 µM concentration against extracellular promastigotes and intracellular amastigotes during macrophage infection. Most compounds were more active against amastigotes than to promastigotes. The derivatives (E)-3-oxo-1,3-dihydroisobenzofuran-5-yl-(3,4,5-trimethoxy) cinnamate (5c), (1-(3,4-difluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl cinnamate (9g), and (1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl cinnamate (9l) were the most effective presenting over 80% toxicity on L. braziliensis amastigotes. While compound 5c is a cinnamate with an isobenzofuranone portion, 9g and 9l are triazolic cinnamic acid derivatives. The action of these compounds was comparable to amphotericin B used as positive control. Ultrastructural analysis revealed that 5c-treated parasites showed impaired cytokinesis and apoptosis triggering. Taken together, these results highlight the potential of cinnamic acid derivatives in development of novel anti-leishmanial drugs.


Assuntos
Antineoplásicos/farmacologia , Cinamatos/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Cinamatos/síntese química , Cinamatos/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA