Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928035

RESUMO

The development of resistance to tyrosine kinase inhibitors (TKIs) is a major cause of treatment failure in metastatic renal cell carcinoma (mRCC). A deeper understanding of the metabolic mechanisms associated with TKI resistance is critical for refining therapeutic strategies. In this study, we established resistance to sunitinib and pazopanib by exposing a parental Caki-1 cell line to increasing concentrations of sunitinib and pazopanib. The intracellular and extracellular metabolome of sunitinib- and pazopanib-resistant mRCC cells were investigated using a nuclear magnetic resonance (NMR)-based metabolomics approach. Data analysis included multivariate and univariate methods, as well as pathway and network analyses. Distinct metabolic signatures in sunitinib- and pazopanib-resistant RCC cells were found for the first time in this study. A common metabolic reprogramming pattern was observed in amino acid, glycerophospholipid, and nicotinate and nicotinamide metabolism. Sunitinib-resistant cells exhibited marked alterations in metabolites involved in antioxidant defence mechanisms, while pazopanib-resistant cells showed alterations in metabolites associated with energy pathways. Sunitinib-resistant RCC cells demonstrated an increased ability to proliferate, whereas pazopanib-resistant cells appeared to restructure their energy metabolism and undergo alterations in pathways associated with cell death. These findings provide potential targets for novel therapeutic strategies to overcome TKI resistance in mRCC through metabolic regulation.


Assuntos
Carcinoma de Células Renais , Resistencia a Medicamentos Antineoplásicos , Indazóis , Neoplasias Renais , Metabolômica , Inibidores de Proteínas Quinases , Pirimidinas , Sulfonamidas , Sunitinibe , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Sunitinibe/farmacologia , Sulfonamidas/farmacologia , Metabolômica/métodos , Indazóis/farmacologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Pirimidinas/farmacologia , Metaboloma/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
2.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077297

RESUMO

Sunitinib and pazopanib are tyrosine kinase inhibitors (TKIs) used as first-line therapy for metastatic renal cell carcinoma (RCC). Although these TKIs are associated with similar survival outcomes, some differences have been reported in their safety profiles. In this work, traditional toxicological endpoints (cell viability and growth, oxidative stress, and nuclear morphology) and 1H NMR spectroscopy-based metabolomics analysis were used to provide new insights into the cytotoxicity and metabolic mechanisms underlying sunitinib and pazopanib treatments. Tumoral (Caki-1) and non-tumoral (HK-2) human renal cells were exposed to clinically relevant concentrations of sunitinib (2 µM) or pazopanib (50 µM). Sunitinib showed selectivity for cancer cells, inhibiting proliferation, and inducing apoptotic death of Caki-1 cells, whereas pazopanib had a similar cytotoxic effect in both tumoral and non-tumoral cells. 1H-NMR metabolomics unveiled a higher impact of sunitinib on the levels of intracellular metabolites of Caki-1 cells (seven dysregulated metabolites), suggesting dysregulations on amino acid, glutathione and glycerophospholipid metabolisms. In contrast, pazopanib had a higher impact on the levels of extracellular metabolites of Caki-1 cells (seven dysregulated metabolites in culture medium), unveiling alterations on amino acid and energetic metabolisms. In HK-2 cells, sunitinib caused only a minor increase in intracellular isoleucine levels, whereas pazopanib induced several alterations on the intracellular (three dysregulated metabolites) and extracellular (three dysregulated metabolites) compartments suggesting changes on amino acid, glycerophospholipid, and energy metabolisms. Our results demonstrate that these TKIs elicit distinct cellular and metabolic responses, with sunitinib showing better in vitro efficacy against target RCC cells and lesser nephrotoxic potential than pazopanib.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , Aminoácidos , Antineoplásicos/efeitos adversos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Glicerofosfolipídeos , Humanos , Indazóis , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Pirimidinas , Pirróis/efeitos adversos , Sulfonamidas , Sunitinibe/uso terapêutico
3.
J Proteome Res ; 20(6): 3068-3077, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33797920

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer usually associated with asymptomatic development and risk of systemic progression. Hence, reliable molecular biomarkers of ccRCC are needed to provide early and minimally invasive detection. In this study, urinary volatilome profiling of patients diagnosed with ccRCC (n = 75), and cancer-free controls (n = 75), was performed to investigate the presence of a volatile signature characteristic of ccRCC. Volatile organic compounds (VOCs) in general, and more specifically volatile carbonyl compounds (VCCs), present in urine were extracted by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Supervised multivariate models showed a good discriminatory power of ccRCC patients from controls in urine. Overall, 22 volatile metabolites were found significantly altered between the two groups, including aldehydes, ketones, aromatic hydrocarbons, and terpenoids. A candidate six-biomarker panel, comprising octanal, 3-methylbutanal, benzaldehyde, 2-furaldehyde, 4-heptanone, and p-cresol, depicted the best performance for ccRCC detection with 83% sensitivity, 79% specificity, and 81% accuracy. Moreover, the ccRCC urinary volatilome signature suggested dysregulation of energy metabolism and overexpression of enzymes associated with carcinogenesis. These findings provide the molecular basis for the fine-tuning of gas-sensing materials for application in the development of a bioelectronic sensor.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Compostos Orgânicos Voláteis , Biomarcadores , Carcinoma de Células Renais/diagnóstico , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias Renais/diagnóstico , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise
4.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120955

RESUMO

Adrenaline, which participates in the neuroendocrine response that occurs during stress and perimenopause, may be tumorigenic. This exploratory study aimed at investigating whether non-tumorigenic and tumorigenic human breast epithelial cell lines are able to synthesize adrenaline. The study was carried out in non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) human breast cell lines. Expression of enzymes involved in adrenaline synthesis was characterized by RT-qPCR, immunocytochemistry and western blot. Catecholamines and analogue compounds were quantified by HPLC-ECD. Functional assessment of the impact of drugs on cells' tumorigenic potential was assessed by determination of cell viability and clonogenic ability. Both MCF-10A and MCF-7 cells produce catecholamines, but the capacity to produce adrenaline is lower in MCF-10A cells. ß-adrenoceptor activation increases the capacity of MCF-10A cells to produce adrenaline and favor both cell viability and colony formation. It is concluded that exposure of human breast epithelial cells to ß-adrenoceptor agonists increases cell proliferation and the capacity to produce adrenaline, creating an autocrine potential to spread these adrenergic effects in a feed-forward loop. It is conceivable that these effects are related to tumorigenesis, bringing a new perspective to understand the claimed anticancer effects of propranolol and the increase in breast cancer incidence caused by stress or during perimenopause.


Assuntos
Agonistas Adrenérgicos/farmacologia , Neoplasias da Mama/metabolismo , Mama/citologia , Catecolaminas/biossíntese , Receptores Adrenérgicos/metabolismo , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/genética , Catecolaminas/análise , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Meios de Cultura/análise , Epinefrina/análise , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Norepinefrina/análise , Propranolol/farmacologia
5.
Biochem Pharmacol ; 227: 116424, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004232

RESUMO

Redox-based cancer therapeutic strategies aim to raise reactive oxygen species (ROS) levels in cancer cells, thus modifying their redox status, and eventually inducing cell death. Promising compounds, known as superoxide dismutase mimics (SODm), e.g. MnTnHex-2-Py5+ (MnTnHex), could increase intracellular H2O2 in cancer cells with deficient ROS removal systems and therefore enhance radio- and chemotherapy efficacy. We have previously shown that MnTnHex was cytotoxic either alone or combined with cisplatin to non-small cell lung cancer (NSCLC) cells. To gain a deeper understanding of the effects and safety of this compound, it is crucial to analyze the metabolic alterations that take place within the cell. Our goal was thus to study the intracellular metabolome (intracellular metabolites) of NSCLC cells (A549 and H1975) using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics to evaluate the changes in cellular metabolism upon exposure to MnTnHex per se or in combination with cisplatin. 1H NMR metabolomics revealed a higher number of significantly altered metabolites in A549 cells exposed to MnTnHex alone or combined with cisplatin in comparison with non-treated cells (nine dysregulated metabolites), suggesting an impact on aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, taurine, hypotaurine, glycerophospholipid, pyruvate, arginine and proline metabolisms. Regarding H1975 cells, significant alterations in the levels of six metabolites were observed upon co-treatment with MnTnHex and cisplatin, suggesting dysregulations in aminoacyl-tRNA biosynthesis, arginine and proline metabolism, pyruvate metabolism, and glycolysis/gluconeogenesis. These findings help us to understand the impact of MnTnHex on NSCLC cells. Importantly, specific altered metabolites, such as taurine, may contribute to the chemosensitizing effects of MnTnHex.

6.
Clin Chim Acta ; 549: 117553, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690663

RESUMO

A significant number of patients diagnosed with localized urological cancers experience relapse and disease progression after surgery. Hence, molecular markers for patient risk stratification are needed to improve the current management guidelines. This article critically reviews for the first time, to our knowledge, the promise of metabolomics-based approaches to identify metabolic signatures as candidate prognostic biomarkers to predict recurrences at the time of surgery in prostate cancer (PCa), bladder cancer (BCa), and renal cell carcinoma (RCC). Dysregulations in the levels of several tumoral, circulating, and excreted metabolites have been reported in PCa patients experiencing recurrence within 1.5 to 8 years of follow-up. The combination of these metabolic biomarkers with clinical parameters (e.g., pathological T stage, Gleason score) has shown great potential to improve the predictive ability of PCa recurrence. In contrast, predictive biomarkers of recurrence in BCa and RCC have been poorly explored. Overall, this review highlights the great potential of metabolomics in discovering prognostic biomarkers for a more accurate patient risk stratification in urological cancers.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias da Próstata , Masculino , Humanos , Carcinoma de Células Renais/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Gradação de Tumores , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia
7.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35337093

RESUMO

Prostate cancer (PCa), bladder cancer (BCa), and renal cell carcinoma (RCC) are the most common urological cancers, and their incidence has been rising over time. Surgery is the standard treatment for these cancers, but this procedure is only effective when the disease is localized. For metastatic disease, PCa is typically treated with androgen deprivation therapy, while BCa is treated with chemotherapy, and RCC is managed primarily with targeted therapies. However, response rates to these therapeutic options remain unsatisfactory due to the development of resistance and treatment-related toxicity. Thus, the discovery of biomarkers with prognostic and predictive value is needed to stratify patients into different risk groups, minimizing overtreatment and the risk of drug resistance development. Pharmacometabolomics, a branch of metabolomics, is an attractive tool to predict drug response in an individual based on its own metabolic signature, which can be collected before, during, and after drug exposure. Hence, this review focuses on the application of pharmacometabolomic approaches to identify the metabolic responses to hormone therapy, targeted therapy, immunotherapy, and chemotherapy for the most prevalent urological cancers.

8.
Foods ; 11(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35159445

RESUMO

This study aimed at investigating the impact of different technical cork stoppers on the quality preservation and shelf life of sparkling wines. The volatile compositions of two Italian sparkling wines sealed with a sparkling cork with two natural cork discs (2D) and a microagglomerated (MA) cork were determined during bottle aging (12 to 42 months) after disgorging, by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC/MS). The volatile profile of the sparkling wine #1 sealed with 2D stoppers showed the presence of camphor from 12 to 42 months, along with significant alterations in the levels of several alcohols, ketones, and ethyl esters at 24 and 42 months. The impact of closure type was less pronounced for sparkling wine #2 which also showed the presence of camphor from 12 to 42 months in 2D samples, and significantly higher levels of esters at 24 and 42 months for 2D compared with MA. These results unveiled that the type of closure has a greater impact on the volatile composition of sparkling wines at longer post-bottling periods and 2D stoppers preserve the fruity and sweety aromas of sparkling wines better after 42 months of bottle storage.

9.
Foods ; 11(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35267384

RESUMO

Large amounts of Prunus avium L. by-products result from sweet cherry production and processing. This work aimed to evaluate the mineral content and volatile profiling of the cherry stems, leaves, and flowers of the Saco cultivar collected from the Fundão region (Portugal). A total of 18 minerals were determined by ICP-MS, namely 8 essential and 10 non-essential elements. Phosphorus (P) was the most abundant mineral, while lithium (Li) was detected in trace amounts. Three different preparations were used in this work to determine volatiles: hydroethanolic extracts, crude extracts, and aqueous infusions. A total of 117 volatile compounds were identified using HS-SPME/GC-MS, distributed among different chemical classes: 31 aldehydes, 14 alcohols, 16 ketones, 30 esters, 4 acids, 4 monoterpenes, 3 norisoprenoids, 4 hydrocarbons, 7 heterocyclics, 1 lactone, 1 phenol, and 2 phenylpropenes. Benzaldehyde, 4-methyl-benzaldehyde, hexanal, lilac aldehyde, and 6-methyl-5-hepten-2-one were the major volatile compounds. Differences in the types of volatiles and their respective amounts in the different extracts were found. This is the first study that describes the mineral and volatile composition of Portuguese sweet cherry by-products, demonstrating that they could have great potential as nutraceutical ingredients and natural flavoring agents to be used in the pharmaceutical, cosmetic, and food industries.

10.
Antioxidants (Basel) ; 11(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36358570

RESUMO

The manganese(III) porphyrin MnTnHex-2-PyP5+ (MnTnHex) is a potent superoxide dismutase mimic and modulator of redox-based transcriptional activity that has been studied in the context of different human disease models, including cancer. Nevertheless, for lung cancer, hardly any information is available. Thus, the present work aims to fill this gap and reports the effects of MnTnHex in non-small cell lung cancer (NSCLC) cells, more specifically, A549 and H1975 cells, in vitro. Both cell lines were initially characterized in terms of innate levels of catalase, glutathione peroxidase 1, and peroxiredoxins 1 and 2. To assess the effect of MnTnHex in NSCLC, alone or in combination with cisplatin, endpoints related to the cell viability, cell cycle distribution, cell motility, and characterization of the volatile carbonyl compounds (VCCs) generated in the extracellular medium (i.e., exometabolome) were addressed. The results show that MnTnHex as a single drug markedly reduced the viability of both NSCLC cell lines, with some IC50 values reaching sub-micromolar levels. This redox-active drug also altered the cell cycle distribution, induced cell death, and increased the cytotoxicity pattern of cisplatin. MnTnHex also reduced collective cell migration. Finally, the metabolomics study revealed an increase in the levels of a few VCCs associated with oxidative stress in MnTnHex-treated cells. Altogether these results suggest the therapeutic potential of MnTnHex to be further explored, either alone or in combination therapy with cisplatin, in NSCLC.

11.
Foods ; 10(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34574180

RESUMO

Wine flavor undergoes major changes during bottle aging and can be influenced by the type of closure. The interaction between wine, the type of closure and the external environment has the potential to significantly influence the overall quality of bottled wines, especially when the storage period is relatively long (more than five years). Therefore, the choice of closure (cork, synthetic or screw cap) deserves special attention in order to establish the ideal sealing conditions for optimizing wine flavor attributes. The contribution of different closures to the quality of bottled wine is through mass transfer phenomena, including permeation, sorption (scalping) or desorption of chemicals between closure materials and wines. Thus, this article aims to review the impact of different closures on the flavor composition of wines during post-bottling conditions. The implications of closures on wine sensory properties are also discussed.

12.
Metabolites ; 11(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808897

RESUMO

Prostate cancer (PCa) is the second most diagnosed cancer in men worldwide. For its screening, serum prostate specific antigen (PSA) test has been largely performed over the past decade, despite its lack of accuracy and inability to distinguish indolent from aggressive disease. Metabolomics has been widely applied in cancer biomarker discovery due to the well-known metabolic reprogramming characteristic of cancer cells. Most of the metabolomic studies have reported alterations in urine of PCa patients due its noninvasive collection, but the analysis of prostate tissue metabolome is an ideal approach to disclose specific modifications in PCa development. This review aims to summarize and discuss the most recent findings from tissue and urine metabolomic studies applied to PCa biomarker discovery. Eighteen metabolites were found consistently altered in PCa tissue among different studies, including alanine, arginine, uracil, glutamate, fumarate, and citrate. Urine metabolomic studies also showed consistency in the dysregulation of 15 metabolites and, interestingly, alterations in the levels of valine, taurine, leucine and citrate were found in common between urine and tissue studies. These findings unveil that the impact of PCa development in human metabolome may offer a promising strategy to find novel biomarkers for PCa diagnosis.

13.
Talanta ; 223(Pt 1): 121698, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303150

RESUMO

An untargeted approach, focused in the profile of volatile organic compounds (VOCs), was applied to differentiate natural cork stoppers with different levels of porosity, coded as Group 1 (low porosity), Group 2 (intermediate porosity) and Group 3 (high porosity). Statistically significant alterations were found in the levels of several VOCs between cork stoppers of low and intermediate porosity when compared with those of high porosity (Group 1 vs. 3 and Group 2 vs. 3). In addition, the levels of 2-pentylfuran, cyclene, camphene, camphor, limonene and eucalyptol enabled the discrimination of cork stoppers with low porosity (Group 1) into two subgroups, while furfural and 5-methyl-2-furfural enabled the discrimination of subgroups within the intermediate and high porosity stoppers (Group 2 and 3). A headspace solid-phase microextraction coupled to gas chromatography tandem mass spectrometry (HS-SPME-GC-MS/MS) method was developed to quantify the subgroup discriminant compounds, which may provide a proof-of-concept for the development of an efficient method to be applied in cork industry.

14.
Metabolites ; 11(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810601

RESUMO

Timely diagnosis is crucial to improve the long-term survival of bladder cancer (BC) patients. The discovery of new BC biomarkers based in urine analysis is very attractive because this biofluid is in direct contact with the inner bladder layer, in which most of the neoplasms develop, and is non-invasively collected. Hence, this work aimed to unveil alterations in the urinary volatile profile of patients diagnosed with BC compared with cancer-free individuals, as well as differences among patients diagnosed at different tumor stages, to identify candidate biomarkers for non-invasive BC diagnosis and staging. Urine analysis was performed by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results unveiled that BC patients have a distinct urinary volatile profile characterized by higher levels of several alkanes and aromatic compounds, and lower levels of aldehydes, ketones and monoterpenes. Seventeen significantly altered volatiles were used to evaluate the performance for overall BC detection, disclosing 70% sensitivity, 89% specificity and 80% accuracy. Moreover, distinct urinary volatile profiles were found among patients diagnosed at different tumor stages (Ta/Tis, T1 and ≥T2). This work identified distinct urinary volatile signatures of BC patients with potential for non-invasive detection and staging of bladder cancer.

15.
Metabolites ; 10(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349455

RESUMO

The identification of noninvasive biomarkers able to detect renal cell carcinoma (RCC) at an early stage remains an unmet clinical need. The recognition that altered metabolism is a core hallmark of cancer boosted metabolomic studies focused in the search for cancer biomarkers. The present work aims to evaluate the performance of the volatile metabolites present in the extracellular medium to discriminate RCC cell lines with distinct histological subtypes (clear cell and papillary) and metastatic potential from non-tumorigenic renal cells. Hence, volatile organic compounds (VOCs) and volatile carbonyl compounds (VCCs) were extracted by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). Multivariate and univariate analysis unveiled a panel of metabolites responsible for the separation between groups, mostly belonging to ketones, alcohols, alkanes and aldehydes classes. Some metabolites were found similarly altered for all RCC cell lines compared to non-tumorigenic cells, namely 2-ethylhexanol, tetradecane, formaldehyde, acetone (increased) and cyclohexanone and acetaldehyde (decreased). Furthermore, significantly altered levels of cyclohexanol, decanal, decane, dodecane and 4-methylbenzaldehyde were observed in all metastatic RCC cell lines when compared with the non-metastatic ones. Moreover, some alterations in the volatile composition were also observed between RCC histological subtypes. Overall, our results demonstrate the potential of volatile profiling for identification of noninvasive candidate biomarkers for early RCC diagnosis.

16.
Biomolecules ; 9(9)2019 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450593

RESUMO

Carbidopa is used for the treatment of Parkinson's disease (PD) as an inhibitor of DOPA decarboxylase, and PD patients taking carbidopa have a lower incidence of various tumors, except for breast cancer and melanoma. Recently, it was shown that carbidopa inhibits tryptophan-2,3-dioxygenase (TDO) and kynureninase enzymes. In the present study, the effect of carbidopa on the viability and metabolic profile of breast cancer MCF-7 and melanoma A375 cells was investigated. Carbidopa was not effective in inhibiting MCF-7 and A375 proliferation. Liquid chromatography and mass spectrometry revealed a new compound, identified as indole-3-acetonitrile (IAN), which promoted a concentration-dependent increase in the viability of both cell lines. The results suggest that treatment with carbidopa may alter tryptophan (Trp) metabolism in breast cancer and melanoma leading to the formation of a pro-proliferative Trp metabolite, which may contribute to its failure in reducing breast cancers and melanoma incidence in PD patients taking carbidopa.


Assuntos
Carbidopa/farmacologia , Proliferação de Células/efeitos dos fármacos , Indóis/metabolismo , Triptofano/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Indóis/análise , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA