Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 34(27): e2201446, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35524951

RESUMO

It is challenging to develop alloying anodes with ultrafast charging and large energy storage using bulk anode materials because of the difficulty of carrier-ion diffusion and fragmentation of the active electrode material. Herein, a rational strategy is reported to design bulk Bi anodes for Na-ion batteries that feature ultrafast charging, long cyclability, and large energy storage without using expensive nanomaterials and surface modifications. It is found that bulk Bi particles gradually transform into a porous nanostructure during cycling in a glyme-based electrolyte, whereas the resultant structure stores Na ions by forming phases with high Na diffusivity. These features allow the anodes to exhibit unprecedented electrochemical properties; the developed Na-Bi half-cell delivers 379 mA h g-1 (97% of that measured at 1C) at 7.7 A g-1 (20C) during 3500 cycles. It also retained 94% and 93% of the capacity measured at 1C even at extremely fast-charging rates of 80C and 100C, respectively. The structural origins of the measured properties are verified by experiments and first-principles calculations. The findings of this study not only broaden understanding of the underlying mechanisms of fast-charging anodes, but also provide basic guidelines for searching battery anodes that simultaneously exhibit high capacities, fast kinetics, and long cycling stabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA