Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(23): 10076-10085, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34843262

RESUMO

Momentum space topology can be exploited to manipulate radiation in real space. Here we demonstrate topological control of 2D perovskite emission in the strong coupling regime via polaritonic bound states in the continuum (BICs). Topological polarization singularities (polarization vortices and circularly polarized eigenstates) are observed at room temperature by measuring the Stokes parameters of photoluminescence in momentum space. Particularly, in symmetry-broken structures, a very large degree of circular polarization (DCP) of ∼0.835 is achieved in the perovskite emission, which is the largest in perovskite materials to our knowledge. In the strong coupling regime, lower polariton modes shift to the low-loss spectral region, resulting in strong emission enhancement and large DCP. Our reciprocity analysis reveals that DCP is limited by material absorption at the emission wavelength. Polaritonic BICs based on 2D perovskite materials combine unique topological features with exceptional material properties and may become a promising platform for active nanophotonic devices.

2.
Sci Rep ; 13(1): 18179, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875586

RESUMO

Three-dimensional (3D) printing allows the fabrication of complex shapes with high resolutions. However, the printed structures typically have fixed shapes and functions. Four-dimensional printing allows the shapes of 3D-printed structures to be transformed in response to external stimuli. Among the external stimuli, light has unique advantages for remote thermal actuation. However, light absorption in opaque structures occurs only near the sample surface; thus, actuation can be slow. Here, we propose and experimentally demonstrate the rapid and selective actuation of 3D-printed shape-memory polymer (SMP) composites using microwave heating. The SMP composite filaments are prepared using different amounts of graphite flakes. Microwave radiation can penetrate the entire printed structures and induce rapid heating. With sufficient graphite contents, the printed SMP composites are heated above their glass transition temperature within a few seconds. This leads to rapid thermal actuation of the 3D-printed SMP structures. Finally, dual-material 3D printing is demonstrated to induce selective microwave heating and control actuation motion. Our experiments and simulations indicate that microwave heating of SMP composites can be an effective method for the rapid and selective actuation of complex structures.

3.
Sci Adv ; 9(26): eadh0414, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379382

RESUMO

Chiral light sources realized in ultracompact device platforms are highly desirable for various applications. Among active media used for thin-film emission devices, lead-halide perovskites have been extensively studied for photoluminescence due to their exceptional properties. However, up to date, there have been no demonstrations of chiral electroluminescence with a substantial degree of circular polarization (DCP) based on perovskite materials, being critical for the development of practical devices. Here, we propose a concept of chiral light sources based on a thin-film perovskite metacavity and experimentally demonstrate chiral electroluminescence with a peak DCP approaching 0.38. We design a metacavity created by a metal and a dielectric metasurface supporting photonic eigenstates with a close-to-maximum chiral response. Chiral cavity modes facilitate asymmetric electroluminescence of pairs of left and right circularly polarized waves propagating in the opposite oblique directions. The proposed ultracompact light sources are especially advantageous for many applications requiring chiral light beams of both helicities.

4.
Sci Rep ; 11(1): 22817, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819584

RESUMO

Spoof surface plasmons in corrugated metal surfaces allow tight field confinement and guiding even at low frequencies and are promising for compact microwave photonic devices. Here, we use metal-ink printing on flexible substrates to construct compact spoof plasmon resonators. We clearly observe multipole resonances in the microwave frequencies and demonstrate that they are still maintained even under significant bending. Moreover, by combining two resonators of slightly different sizes, we demonstrate spectral filtering via the Vernier effect. We selectively address a target higher-order resonance while suppressing the other modes. Finally, we investigate the index-sensing capability of printed plasmonic resonators. In the Vernier structure, we can control the resonance amplitude and frequency by adjusting a resonance overlap between two coupled resonators. The transmission amplitude can be maximized at a target refractive index, and this can provide more functionalities and increased design flexibility. The metal-ink printing of microwave photonic structures can be applied to various flexible devices. Therefore, we expect that the compact, flexible plasmonic structures demonstrated in this study may be useful for highly functional elements that can enable tight field confinement and manipulation.

5.
ACS Nano ; 15(8): 13781-13793, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34319691

RESUMO

Organic-inorganic hybrid perovskites hold great potential for various optoelectronic devices with exceptional properties. Although the direct generation of circularly polarized emission from perovskites would enable various compact devices, achieving a large degree of circular polarization (DCP) at room temperature still remains challenging. Herein, we demonstrate that DCP can be strongly enhanced at the narrow mode position of chiral Fano resonances. In our design, a perovskite film is spin-coated on a symmetry-broken structure with a relatively large feature size. A large DCP of more than 0.5 is achieved at room temperature without the direct patterning of the perovskite layer. Reciprocity calculation reveals that chiral field enhancement enables the emission of opposite helicity to couple into counter-propagating slab modes and leads to a large DCP. Our design is very general and scalable. Our work may lead to circularly polarized light sources based on various perovskite materials.

6.
Sci Rep ; 9(1): 324, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674968

RESUMO

Three-dimensional (3D) printing is ideal for the fabrication of various customized 3D components with fine details and material-design complexities. However, most components fabricated so far have been static structures with fixed shapes and functions. Here we introduce bistability to 3D printing to realize highly-controlled, reconfigurable structures. Particularly, we demonstrate 3D printing of twisting and rotational bistable structures. To this end, we have introduced special joints to construct twisting and rotational structures without post-assembly. Bistability produces a well-defined energy diagram, which is important for precise motion control and reconfigurable structures. Therefore, these bistable structures can be useful for simplified motion control in actuators or for mechanical switches. Moreover, we demonstrate tunable bistable components exploiting shape memory polymers. We can readjust the bistability-energy diagram (barrier height, slope, displacement, symmetry) after printing and achieve tunable bistability. This tunability can significantly increase the use of bistable structures in various 3D-printed components.

7.
Sci Rep ; 7(1): 16186, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170527

RESUMO

High-index dielectric structures have recently been studied intensively for Mie resonances at optical frequencies. These dielectric structures can enable extreme light manipulation, similar to that which has been achieved with plasmonic nanostructures. In the microwave region, dielectric resonators and metamaterials can be fabricated directly using 3D printing, which is advantageous for fabricating structurally complicated 3D geometries. It is therefore especially suitable for the fabrication of subwavelength structures. Here we report theoretical investigations on microwave Fano resonances in 3D-printable dielectric materials and structures. In particular, we propose and analyse 3D-printable, hollow, dielectric resonators with relatively low refractive indices, which exhibit sharp Fano resonances. We can control the interaction between bright and dark modes in a coupled dielectric particle pair by adjusting the inner-hole size, and thus we can increase the radiative Q factors further. We also find that Fano resonances in these hollow dielectric resonators are very sensitive to an index change in the surrounding medium, which could be useful for long-distance environmental sensing. New possibilities and opportunities are opening up with the rapid development of 3D-printing technologies. Our findings and the detailed investigations reported here can provide useful guidelines for future photonic devices based on 3D-printable materials and structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA