Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 965
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(7): 1316-1329, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38889728

RESUMO

Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10-12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10-12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10-8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.


Assuntos
Apolipoproteínas E , Demência Frontotemporal , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas tau , Humanos , Demência Frontotemporal/genética , Proteínas tau/genética , Apolipoproteínas E/genética , Masculino , Feminino , Idoso , Polimorfismo de Nucleotídeo Único , Loci Gênicos , Pessoa de Meia-Idade , Estudos de Casos e Controles , Proteínas da Mielina
2.
PLoS Genet ; 20(8): e1011372, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39146375

RESUMO

Genome-wide association studies (GWAS) implicate broad genomic loci containing clusters of highly correlated genetic variants. Finemapping techniques can select and prioritize variants within each GWAS locus which are more likely to have a functional influence on the trait. Here, we present a novel method, Finemap-MiXeR, for finemapping causal variants from GWAS summary statistics, controlling for correlation among variants due to linkage disequilibrium. Our method is based on a variational Bayesian approach and direct optimization of the Evidence Lower Bound (ELBO) of the likelihood function derived from the MiXeR model. After obtaining the analytical expression for ELBO's gradient, we apply Adaptive Moment Estimation (ADAM) algorithm for optimization, allowing us to obtain the posterior causal probability of each variant. Using these posterior causal probabilities, we validated Finemap-MiXeR across a wide range of scenarios using both synthetic data, and real data on height from the UK Biobank. Comparison of Finemap-MiXeR with two existing methods, FINEMAP and SuSiE RSS, demonstrated similar or improved accuracy. Furthermore, our method is computationally efficient in several aspects. For example, unlike many other methods in the literature, its computational complexity does not increase with the number of true causal variants in a locus and it does not require any matrix inversion operation. The mathematical framework of Finemap-MiXeR is flexible and may also be applied to other problems including cross-trait and cross-ancestry finemapping.


Assuntos
Algoritmos , Teorema de Bayes , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Modelos Genéticos , Locos de Características Quantitativas
3.
Proc Natl Acad Sci U S A ; 121(34): e2312511121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141354

RESUMO

Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modeling of postsynaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from postmortem RNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in the anterior cingulate cortex, lead to impaired protein kinase A (PKA)-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped electroencephalogram (EEG) dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.


Assuntos
Plasticidade Neuronal , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Humanos , Plasticidade Neuronal/genética , Simulação por Computador , Potenciação de Longa Duração/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/genética , Eletroencefalografia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Neurológicos , Depressão Sináptica de Longo Prazo/genética , Masculino , Potenciais Evocados Visuais/fisiologia
4.
Proc Natl Acad Sci U S A ; 120(4): e2209983120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669109

RESUMO

TMEM161B encodes an evolutionarily conserved widely expressed novel 8-pass transmembrane protein of unknown function in human. Here we identify TMEM161B homozygous hypomorphic missense variants in our recessive polymicrogyria (PMG) cohort. Patients carrying TMEM161B mutations exhibit striking neocortical PMG and intellectual disability. Tmem161b knockout mice fail to develop midline hemispheric cleavage, whereas knock-in of patient mutations and patient-derived brain organoids show defects in apical cell polarity and radial glial scaffolding. We found that TMEM161B modulates actin filopodia, functioning upstream of the Rho-GTPase CDC42. Our data link TMEM161B with human PMG, likely regulating radial glia apical polarity during neocortical development.


Assuntos
Neocórtex , Animais , Humanos , Camundongos , Células Ependimogliais , Camundongos Knockout
5.
Proc Natl Acad Sci U S A ; 120(14): e2213880120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976765

RESUMO

Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.


Assuntos
Esquizofrenia , Masculino , Feminino , Humanos , Esquizofrenia/diagnóstico por imagem , Estudos de Casos e Controles , Encéfalo/diagnóstico por imagem , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Lateralidade Funcional
6.
Hum Genomics ; 18(1): 108, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334510

RESUMO

BACKGROUND: Treatment resistant schizophrenia (TRS) is broadly defined as inadequate response to adequate treatment and is associated with a substantial increase in disease burden. Clozapine is the only approved treatment for TRS, showing superior clinical effect on overall symptomatology compared to other drugs, and is the prototype of atypical antipsychotics. Risperidone, another atypical antipsychotic with a more distinctive dopamine 2 antagonism, is commonly used in treatment of schizophrenia. Here, we conducted a genome-wide association study on patients treated with clozapine (TRS) vs. risperidone (non-TRS) and investigated whether single variants and/or polygenic risk score for schizophrenia are associated with TRS status. We hypothesized that patients who are treated with clozapine and risperidone might exhibit distinct neurobiological phenotypes that match pharmacological profiles of these drugs and can be explained by genetic differences. The study population (n = 1286) was recruited from a routine therapeutic drug monitoring (TDM) service between 2005 and 2022. History of a detectable serum concentration of clozapine and risperidone (without TDM history of clozapine) defined the TRS (n = 478) and non-TRS (n = 808) group, respectively. RESULTS: We identified a suggestive association between TRS and a common variant within the LINC00523 gene with a significance just below the genome-wide threshold (rs79229764 C > T, OR = 4.89; p = 1.8 × 10-7). Polygenic risk score for schizophrenia was significantly associated with TRS (OR = 1.4, p = 2.1 × 10-6). In a large post-mortem brain sample from schizophrenia donors (n = 214; CommonMind Consortium), gene expression analysis indicated that the rs79229764 variant allele might be involved in the regulation of GPR88 and PUDP, which plays a role in striatal neurotransmission and intellectual disability, respectively. CONCLUSIONS: We report a suggestive genetic association at the rs79229764 locus with TRS and show that genetic liability for schizophrenia is positively associated with TRS. These results suggest a candidate locus for future follow-up studies to elucidate the molecular underpinnings of TRS. Our findings further demonstrate the value of both single variant and polygenic association analyses for TRS prediction.


Assuntos
Antipsicóticos , Clozapina , Estudo de Associação Genômica Ampla , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Risperidona , Esquizofrenia Resistente ao Tratamento , Humanos , Clozapina/uso terapêutico , Herança Multifatorial/genética , Risperidona/uso terapêutico , Masculino , Feminino , Antipsicóticos/uso terapêutico , Adulto , Polimorfismo de Nucleotídeo Único/genética , Pessoa de Meia-Idade , Esquizofrenia Resistente ao Tratamento/genética , Esquizofrenia Resistente ao Tratamento/tratamento farmacológico , Esquizofrenia Resistente ao Tratamento/patologia , Predisposição Genética para Doença , Esquizofrenia/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia
7.
Mol Psychiatry ; 29(8): 2447-2458, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38499654

RESUMO

The occurrence of immune disease comorbidities in Alzheimer's disease (AD) has been observed in both epidemiological and molecular studies, suggesting a neuroinflammatory basis in AD. However, their shared genetic components have not been systematically studied. Here, we composed an atlas of the shared genetic associations between 11 immune-mediated diseases and AD by analyzing genome-wide association studies (GWAS) summary statistics. Our results unveiled a significant genetic overlap between AD and 11 individual immune-mediated diseases despite negligible genetic correlations, suggesting a complex shared genetic architecture distributed across the genome. The shared loci between AD and immune-mediated diseases implicated several genes, including GRAMD1B, FUT2, ADAMTS4, HBEGF, WNT3, TSPAN14, DHODH, ABCB9, and TNIP1, all of which are protein-coding genes and thus potential drug targets. Top biological pathways enriched with these identified shared genes were related to the immune system and cell adhesion. In addition, in silico single-cell analyses showed enrichment of immune and brain cells, including neurons and microglia. In summary, our results suggest a genetic relationship between AD and the 11 immune-mediated diseases, pinpointing the existence of a shared however non-causal genetic basis. These identified protein-coding genes have the potential to serve as a novel path to therapeutic interventions for both AD and immune-mediated diseases and their comorbidities.


Assuntos
Doença de Alzheimer , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doença de Alzheimer/genética , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença/genética , Doenças do Sistema Imunitário/genética , Polimorfismo de Nucleotídeo Único/genética , Encéfalo/metabolismo
8.
Mol Psychiatry ; 29(8): 2467-2477, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38503926

RESUMO

Sex differences in the epidemiology and clinical characteristics of schizophrenia are well-known; however, the molecular mechanisms underlying these differences remain unclear. Further, the potential advantages of sex-stratified meta-analyses of epigenome-wide association studies (EWAS) of schizophrenia have not been investigated. Here, we performed sex-stratified EWAS meta-analyses to investigate whether sex stratification improves discovery, and to identify differentially methylated regions (DMRs) in schizophrenia. Peripheral blood-derived DNA methylation data from 1519 cases of schizophrenia (male n = 989, female n = 530) and 1723 controls (male n = 997, female n = 726) from three publicly available datasets, and the TOP cohort were meta-analyzed to compare sex-specific, sex-stratified, and sex-adjusted EWAS. The predictive power of each model was assessed by polymethylation score (PMS). The number of schizophrenia-associated differentially methylated positions identified was higher for the sex-stratified model than for the sex-adjusted one. We identified 20 schizophrenia-associated DMRs in the sex-stratified analysis. PMS from sex-stratified analysis outperformed that from sex-adjusted analysis in predicting schizophrenia. Notably, PMSs from the sex-stratified and female-only analyses, but not those from sex-adjusted or the male-only analyses, significantly predicted schizophrenia in males. The findings suggest that sex-stratified EWAS meta-analyses improve the identification of schizophrenia-associated epigenetic changes and highlight an interaction between sex and schizophrenia status on DNA methylation. Sex-specific DNA methylation may have potential implications for precision psychiatry and the development of stratified treatments for schizophrenia.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenoma , Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Esquizofrenia/genética , Metilação de DNA/genética , Feminino , Masculino , Estudo de Associação Genômica Ampla/métodos , Epigenoma/genética , Epigênese Genética/genética , Adulto , Caracteres Sexuais , Fatores Sexuais , Predisposição Genética para Doença/genética , Pessoa de Meia-Idade , Epigenômica/métodos , Ilhas de CpG/genética , Estudos de Casos e Controles
9.
Mol Psychiatry ; 29(4): 951-961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225381

RESUMO

The aetiology of conduct problems involves a combination of genetic and environmental factors, many of which are inherently linked to parental characteristics given parents' central role in children's lives across development. It is important to disentangle to what extent links between parental heritable characteristics and children's behaviour are due to transmission of genetic risk or due to parental indirect genetic influences via the environment (i.e., genetic nurture). We used 31,290 genotyped mother-father-child trios from the Norwegian Mother, Father and Child Cohort Study (MoBa), testing genetic transmission and genetic nurture effects on conduct problems using 13 polygenic scores (PGS) spanning psychiatric conditions, substance use, education-related factors, and other risk factors. Maternal or self-reports of conduct problems at ages 8 and 14 years were available for up to 15,477 children. We found significant genetic transmission effects on conduct problems for 12 out of 13 PGS at age 8 years (strongest association: PGS for smoking, ß = 0.07, 95% confidence interval = [0.05, 0.08]) and for 4 out of 13 PGS at age 14 years (strongest association: PGS for externalising problems, ß = 0.08, 95% confidence interval = [0.05, 0.11]). Conversely, we did not find genetic nurture effects for conduct problems using our selection of PGS. Our findings provide evidence for genetic transmission in the association between parental characteristics and child conduct problems. Our results may also indicate that genetic nurture via traits indexed by our polygenic scores is of limited aetiological importance for conduct problems-though effects of small magnitude or effects via parental traits not captured by the included PGS remain a possibility.


Assuntos
Transtorno da Conduta , Herança Multifatorial , Humanos , Feminino , Criança , Noruega , Masculino , Adolescente , Fatores de Risco , Herança Multifatorial/genética , Estudos de Coortes , Transtorno da Conduta/genética , Transtorno da Conduta/epidemiologia , Adulto , Mães , Pai , Comportamento Problema , Predisposição Genética para Doença/genética , Genótipo
10.
Mol Psychiatry ; 29(5): 1465-1477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332374

RESUMO

Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.


Assuntos
Encéfalo , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neuroimagem , Transtornos Psicóticos , Humanos , Transtornos Psicóticos/patologia , Transtornos Psicóticos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Adulto , Adulto Jovem , Adolescente , Sintomas Prodrômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA