Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Electrophoresis ; 33(23): 3529-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23147698

RESUMO

With the recent advances in electron microscopy (EM), computation, and nanofabrication, the original idea of reading DNA sequence directly from an image can now be tested. One approach is to develop heavy atom labels that can provide the contrast required for EM imaging. While evaluating tentative labels for the respective nucleobases in synthetic oligodeoxynucleotides (oligos), we developed a streamlined CE protocol to assess the label stability, reactivity, and selectivity. We report our protocol using osmium tetroxide 2,2'-bipyridine (Osbipy) as a thymidine (T) specific label. The observed rates show that the labeling process is kinetically independent of both the oligo length, and the base composition. The conditions, i.e. temperature, optimal Osbipy concentration, and molar ratio of reagents, to promote 100% conversion of the starting oligo to labeled product were established. Hence, the optimized conditions developed with the oligos could be leveraged to allow osmylation of effectively all Ts in ssDNA, while achieving minimal mislabeling. In addition, the approach and methods employed here may be adapted to the evaluation of other prospective contrasting agents/labels to facilitate next-generation DNA sequencing by EM.


Assuntos
Eletroforese Capilar/métodos , Oligodesoxirribonucleotídeos/química , Cinética , Modelos Lineares , Ressonância Magnética Nuclear Biomolecular , Oligodesoxirribonucleotídeos/isolamento & purificação , Oligodesoxirribonucleotídeos/metabolismo , Compostos Organometálicos/química , Piridinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Timidina/química
2.
Sci Rep ; 9(1): 8889, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222124

RESUMO

Low-energy electrons offer a unique possibility for long exposure imaging of individual biomolecules without significant radiation damage. In addition, low-energy electrons exhibit high sensitivity to local potentials and thus can be employed for imaging charges as small as a fraction of one elementary charge. The combination of these properties makes low-energy electrons an exciting tool for imaging charge transport in individual biomolecules. Here we demonstrate the imaging of individual deoxyribonucleic acid (DNA) molecules at the resolution of about 1 nm with simultaneous imaging of the charging of the DNA molecules that is of the order of less than one elementary charge per nanometer. The cross-correlation analysis performed on different sections of the DNA network reveals that the charge redistribution between the two regions is correlated. Thus, low-energy electron microscopy is capable to provide simultaneous imaging of macromolecular structure and its charge distribution which can be beneficial for imaging and constructing nano-bio-sensors.


Assuntos
DNA/ultraestrutura , Microscopia Eletrônica/métodos , DNA/química , Conformação de Ácido Nucleico
3.
PLoS One ; 8(7): e69058, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935923

RESUMO

We present "molecular threading", a surface independent tip-based method for stretching and depositing single and double-stranded DNA molecules. DNA is stretched into air at a liquid-air interface, and can be subsequently deposited onto a dry substrate isolated from solution. The design of an apparatus used for molecular threading is presented, and fluorescence and electron microscopies are used to characterize the angular distribution, straightness, and reproducibility of stretched DNA deposited in arrays onto elastomeric surfaces and thin membranes. Molecular threading demonstrates high straightness and uniformity over length scales from nanometers to micrometers, and represents an alternative to existing DNA deposition and linearization methods. These results point towards scalable and high-throughput precision manipulation of single-molecule polymers.


Assuntos
Ar , DNA/química , Conformação de Ácido Nucleico , Soluções/química , DNA/ultraestrutura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/ultraestrutura , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Reprodutibilidade dos Testes , Propriedades de Superfície , Tecnologia/instrumentação , Tecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA