Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Mater ; 17(4): 313-317, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29434307

RESUMO

Longitudinal relaxation is the process by which an excited spin ensemble decays into its thermal equilibrium with the environment. In solid-state spin systems, relaxation into the phonon bath usually dominates over the coupling to the electromagnetic vacuum1-9. In the quantum limit, the spin lifetime is determined by phononic vacuum fluctuations 10 . However, this limit was not observed in previous studies due to thermal phonon contributions11-13 or phonon-bottleneck processes10, 14,15. Here we use a dispersive detection scheme16,17 based on cavity quantum electrodynamics18-21 to observe this quantum limit of spin relaxation of the negatively charged nitrogen vacancy (NV-) centre 22 in diamond. Diamond possesses high thermal conductivity even at low temperatures 23 , which eliminates phonon-bottleneck processes. We observe exceptionally long longitudinal relaxation times T1 of up to 8 h. To understand the fundamental mechanism of spin-phonon coupling in this system we develop a theoretical model and calculate the relaxation time ab initio. The calculations confirm that the low phononic density of states at the NV- transition frequency enables the spin polarization to survive over macroscopic timescales.

2.
Phys Rev Lett ; 118(14): 140502, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430485

RESUMO

We report coherent coupling between two macroscopically separated nitrogen-vacancy electron spin ensembles in a cavity quantum electrodynamics system. The coherent interaction between the distant ensembles is directly detected in the cavity transmission spectrum by observing bright and dark collective multiensemble states and an increase of the coupling strength to the cavity mode. Additionally, in the dispersive limit we show transverse ensemble-ensemble coupling via virtual photons.

3.
J Neural Transm (Vienna) ; 117(6): 699-705, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20454983

RESUMO

Central dopaminergic (DA) systems are affected during human immunodeficiency virus (HIV) infection. So far, it is believed that they degenerate with progression of HIV disease because deterioration of DA systems is evident in advanced stages of infection. In this manuscript we found that (a) DA levels are increased and DA turnover is decreased in CSF of therapy-naïve HIV patients in asymptomatic infection, (b) DA increase does not modulate the availability of DA transporters and D2-receptors, (c) DA correlates inversely with CD4+ numbers in blood. These findings show activation of central DA systems without development of adaptive responses at DA synapses in asymptomatic HIV infection. It is probable that DA deterioration in advanced stages of HIV infection may derive from increased DA availability in early infection, resulting in DA neurotoxicity. Our findings provide a clue to the synergism between DA medication or drugs of abuse and HIV infection to exacerbate and accelerate HIV neuropsychiatric disease, a central issue in the neurobiology of HIV.


Assuntos
Dopamina/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Transmissão Sináptica/fisiologia , Ácido 3,4-Di-Hidroxifenilacético/líquido cefalorraquidiano , Adulto , Benzamidas , Antígenos CD4/metabolismo , Estudos de Casos e Controles , Quimiocina CCL2/metabolismo , Galactosefosfatos/metabolismo , HIV/genética , Infecções por HIV/líquido cefalorraquidiano , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/imunologia , Ácido Homovanílico/líquido cefalorraquidiano , Humanos , Masculino , Pessoa de Meia-Idade , Pirrolidinas , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tropanos , Carga Viral/métodos
4.
Artigo em Alemão | MEDLINE | ID: mdl-1467658

RESUMO

EDP-supported documentation of patients has become increasingly important over the last several years. Seven autonomous wards of the gynecological department of the Hospital Rudolfstiftung were equipped with a clinical documentation system. The integration of this new system into the infrastructure of the KIS (Krankenhausinformationssystem) was accomplished with the help of the MD-ADV. We also implemented one of the best-known statistical analyzing systems, SAS, so that we have simple possibilities for statistical calculation and graphical plots.


Assuntos
Sistemas Computacionais , Sistemas de Informação Hospitalar , Sistemas Computadorizados de Registros Médicos/instrumentação , Unidade Hospitalar de Ginecologia e Obstetrícia , Gráficos por Computador , Feminino , Humanos , Software
5.
Arch Microbiol ; 169(6): 483-90, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9575233

RESUMO

Ferric citrate induces transcription of the ferric citrate transport genes fecABCDE in Escherichia coli by binding to the outer-membrane receptor protein FecA without entering the cell. Replete iron concentrations inhibit transcription of the fec transport system via the iron-loaded Fur repressor. Here we show that the Fur repressor activated by Mn2+ (used instead of Fe2+) binds to the promoter of the regulatory genes fecIR and to the promoter of fecABCDE. DNase I footprint analysis revealed that Mn2+-Fur (50 nM) protected 30 nucleotides of the coding strand and 24 nucleotides of the noncoding strand of the fecIR promoter. Higher amounts of Mn2+-Fur (100 nM) covered 41 nucleotides of the coding strand of the fecIR promoter and 38 nucleotides of the coding strand of the fecA promoter. The corresponding region of the noncoding strand of the fecA promoter was hypersensitive to DNase I. The results of a deletion analysis of the fecA promoter supported the previously assigned -35 and -10 regions and nucleotide position +11 for FecI-RNA polymerase interaction. Induction of fecIR transcription by iron limitation increased fecB-lacZ transcription 3.5-fold, whereas under constitutive fecIR transcription, iron limitation increased fecB-lacZ transcription twofold. The two iron-regulated sites of fec transport gene transcription suggest a fast response to sufficient intracellular iron concentrations by repression of fecABCDE transcription and a slower adaptation as the result of fecIR transcription inhibition.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Compostos Férricos/metabolismo , Ferro/farmacologia , Receptores de Superfície Celular , Transcrição Gênica/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Pegada de DNA , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Genes Bacterianos , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo
6.
J Bacteriol ; 177(11): 3320-2, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7768834

RESUMO

Ferric citrate induces the ferric citrate transport system in Escherichia coli without being taken up into cells. The cytoplasmic transmembrane protein FecR, required for the response to ferric citrate, was found to be cleaved by a cellular protease. FecR protein produced by fecR mutants impaired or constitutive in fecA transcription was protease resistant, indicating that conformational changes affect proper functioning of FecR.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Escherichia coli , Escherichia coli/genética , Compostos Férricos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras , Receptores de Superfície Celular , Fator sigma , Proteínas de Transporte/fisiologia , Genes Bacterianos , Conformação Proteica , RNA Mensageiro/genética , Transcrição Gênica
7.
J Bacteriol ; 174(4): 1378-87, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1531225

RESUMO

Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Hidroxâmicos/metabolismo , Quelantes de Ferro/metabolismo , Ferro/metabolismo , Proteínas Periplásmicas de Ligação , Serratia marcescens/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Eletroforese , Compostos Férricos/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Reguladores/genética , Ferro/farmacologia , Cinética , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Sideróforos
8.
J Bacteriol ; 172(2): 572-8, 1990 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-2404942

RESUMO

The cloned sfu region of the Serratia marcescens chromosome confers the ability to grow on iron-limited media to an Escherichia coli K-12 strain that is unable to synthesize a siderophore. This DNA fragment was sequenced and found to contain three genes termed sfuA, sfuB, and sfuC, arranged and transcribed in that order. The sfuA gene encoded a periplasmic polypeptide with calculated molecular weights of 36,154 for the precursor and 33,490 for the mature protein. The sfuB gene product was a very hydrophobic protein with a molecular weight of 56,589. The sfuC gene was found to encode a rather polar but membrane-bound protein with a molecular weight of 36,671 which exhibited strong homology to consensus sequences of nucleotide-binding proteins. The number, structural characteristics, and locations of the SfuABC proteins were typical of a periplasmic-binding-protein-dependent transport mechanism. How Fe3+ is solubilized and taken up across the outer membrane remains an enigma.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Genes Bacterianos , Ferro/metabolismo , Proteínas de Membrana/genética , Proteínas Periplásmicas de Ligação , Serratia marcescens/genética , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico , Códon/genética , DNA Bacteriano/genética , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Plasmídeos , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico , Serratia marcescens/metabolismo
9.
J Bacteriol ; 171(1): 238-43, 1989 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-2644190

RESUMO

A novel iron(III) transport system of Serratia marcescens, named SFU, was cloned and characterized in Escherichia coli. Iron acquisition by this system differed from that by E. coli and related organisms. No siderophore production and no receptor protein related to the SFU system could be detected. In addition, iron uptake was independent of the TonB and ExbB functions. On the cloned 4.8-kilobase sfu fragment, two loci encoding a 36-kilodalton (kDa) protein and three proteins with molecular masses of 40, 38, and 34 kDa were identified; the 40-kDa protein represents a precursor form. Furthermore, chromosomally encoded functions of E. coli were required for the uptake of iron by this system.


Assuntos
Proteínas de Bactérias/genética , Ferro/metabolismo , Serratia marcescens/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Clonagem Molecular , DNA Recombinante/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genótipo , Plasmídeos , Biossíntese de Proteínas , Mapeamento por Restrição , Serratia marcescens/metabolismo , Especificidade da Espécie
10.
EMBO J ; 14(7): 1430-8, 1995 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-7729419

RESUMO

Transport of ferric citrate into cells of Escherichia coli K-12 involves two energy-coupled transport systems, one across the outer membrane and one across the cytoplasmic membrane. Previously, we have shown that ferric citrate does not have to enter the cytoplasm of E. coli K-12 to induce transcription of the fec ferric citrate transport genes. Here we demonstrate that ferric citrate uptake into the periplasmic space between the outer and the cytoplasmic membranes is not required for fec gene induction. Rather, FecA and the TonB, ExbB and ExbD proteins are involved in induction of the fec transport genes independent of their role in ferric citrate transport across the outer membrane. The uptake of ferric citrate into the periplasmic space of fecA and tonB mutants via diffusion through the porin channels did not induce transcription of fec transport genes. Point mutants in FecA displayed the constitutive expression of fec transport genes in the absence of ferric citrate but still required TonB, with the exception of one FecA mutant which showed a TonB-independent induction. The phenotype of the FecA mutants suggests a signal transduction mechanism across three compartments: the outer membrane, the periplasmic space and the cytoplasmic membrane. The signal is triggered upon the interaction of ferric citrate with FecA protein. It is postulated that FecA, TonB, ExbB and ExbD transfer the signal across the outer membrane, while the regulatory protein FecR transmits the signal across the cytoplasmic membrane to FecI in the cytoplasm. FecI serves as a sigma factor which facilitates binding of the RNA polymerase to the fec transport gene promoter upstream of fecA.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Compostos Férricos/metabolismo , Regulação Bacteriana da Expressão Gênica , Receptores de Superfície Celular , Fator sigma/biossíntese , Transdução de Sinais , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Sequência de Bases , Transporte Biológico , Membrana Celular/metabolismo , Primers do DNA , Genes Bacterianos , Cinética , Proteínas de Membrana/biossíntese , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Ativação Transcricional
11.
Mol Gen Genet ; 250(4): 455-65, 1996 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-8602163

RESUMO

Ferric citrate induces transcription of the ferric citrate transport genes (fec) in escherichia coli by binding to the outer membrane receptor protein FecA without entering the cell. The signal elicited by ferric citrate crosses the outer membrane via TonB, ExbB, and ExbD. FecR transmits the signal across the cytoplasmic membrane and activates FecI located in the cytoplasm. FecI belongs to a subgroup of sigma factors that respond to extracytoplasmic stimuli. Chromosomal insertion and deletion mutations were generated in fecI; the resulting mutants were totally devoid of FecA production and fecB-lacZ expression. Iron starvation did not derepress fec transport gene transcription in fecI mutants. Missense point mutations were generated in the predicted helix-turn-helix motif of FecI to examine its role in transcription initiation. Replacement of glutamate by alanine (E141A) at the third position in the first helix reduced the residual activity of FecI in the absence of ferric citrate to 30% of the wild-type level, but induced fec transcription almost normally n the presence of ferric citrate. Mutant FecI(K145E) displayed 156% of the activity of wild-type FecI in the absence of ferric citrate and conferred full induction by ferric citrate. Mutant FecI(K155E), which has a mutation in the second helix, showed 9% of the wild-type activity in the presence of ferric citrate and 78% in the absence of ferric citrate. The reduced activity of FecI(K155E) was also shown in vitro by DNA binding assays with cell lysates; in gel retardation experiments FecI(K155E) reduced the electrophoretic mobility of fecA promoter-containing DNA less than did wild-type FecI. fecI is not autoregulated, as demonstrated by the lack of FecI-induced fecI-lacZ expression in vivo and by the lack of specific fecI transcription in vitro. Instead, formation of fecI mRNA requires sigma 70. We conclude that transcription of the fec transport genes is regulated by FecI, which responds to ferric citrate via FecR. fecI and fecR co-transcription is inhibited by the iron-loaded Fur repressor, which then results in a low level of transcription of the fec transport genes.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/genética , Compostos Férricos/metabolismo , Proteínas de Membrana Transportadoras , Receptores de Superfície Celular , Fator sigma/genética , Transdução de Sinais/genética , Transcrição Gênica/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/fisiologia , Sequência de Bases , Transporte Biológico , Proteínas de Transporte/biossíntese , Análise Mutacional de DNA , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Sequências Hélice-Volta-Hélice/genética , Homeostase , Ferro/fisiologia , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Repressoras/fisiologia , Fator sigma/fisiologia
12.
Mol Microbiol ; 18(1): 163-74, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8596456

RESUMO

Transcription of the ferric citrate transport system of Escherichia coli K-12 is repressed by Fe(2+)-Fur and activated by ferric citrate. Ferric citrate does not have to enter the cytoplasm; it initiates a signal transduction mechanism by binding to the outer membrane receptor FecA. Presumably, a conformational change is transmitted in a TonB-dependent manner to the FecR protein. FecR activates FecI, and FecI activates transcription of the fecABCDE transport genes. In this communication, FecI was isolated after cloning fecI downstream of an ideal ribosome-binding site. Overexpressed FecI formed inclusion bodies which were solubilized and purified in active form using a mild detergent. FecI, in conjunction with RNA polymerase core enzyme, directed transcription from the fecA promoter in an in vitro run-off transcription assay. Furthermore, FecI retarded the electrophoretic mobility of a specific 75 bp DNA fragment located upstream of fecA. An in vivo competition experiment between the fecA promoters of wild-type and mutant strains identified the nucleotide positions 2747, 2749, 2751 and 2753, located within the 75 bp fragment, as important for FecI-induced transcription. Mobility band shift of fecA promoter DNA caused by cell lysates required growth of cells in the presence of ferric citrate and expression of FecA, FecI and FecR. These data support the previous assignment of FecI, based on sequence homologies, to a new subfamily of eubacterial RNA polymerase sigma 70 factors that respond to extra-cytoplasmic stimuli and regulate extracytoplasmic functions.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Compostos Férricos/metabolismo , Regulação Bacteriana da Expressão Gênica , Bombas de Íon , Receptores de Superfície Celular , Fator sigma/genética , Transcrição Gênica , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fator sigma/isolamento & purificação , Fator sigma/metabolismo , Transdução de Sinais
13.
J Bacteriol ; 178(16): 5020-3, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8759870

RESUMO

The gene encoding Neisseria gonorrhoeae periplasmic binding protein FbpA contains two regions whose sequences exhibit homology with the Escherichia coli ferric uptake regulator protein (Fur) consensus binding sequence. In this study, DNase I footprinting experiments were employed to characterize the operator sequences within the fbpA promoter region to which E. coli Fur binds. A 160-bp fragment encompassing the promotor region and the putative iron boxes of the fbpA promoter was incubated with Fur, DNaseI was added, and the products of these reactions were sequenced to identify nucleotide peaks that were protected. At 50 nM Fur, a protected region that spanned 33 bp and extended 19 bp upstream and 8 bp downstream of the -35 region of the fbpA promoter was observed. At higher concentrations of Fur (75 and 100 nM), an extension of this protected region upstream of the -35 region was observed. Introduction of a plasmid carrying an fbpA-cat transcriptional fusion in E. coli H1717 (Fur+) resulted in an 88% induction of chloramphenicol acetyltransferase expression under conditions of iron restriction; however, chloramphenicol acetyltransferase expression was not responsive to iron in E. coli H1745 (Fur-), indicating that transcriptional regulation of fbpA in response to iron occurs via the negative regulator Fur. The extent of the fbpA operator sequence (42 bp), as defined by our footprinting analysis, would suggest the binding of two Fur repressor dimers.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Neisseria gonorrhoeae/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias/biossíntese , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/biossíntese , Sequência Consenso , Primers do DNA , DNA Bacteriano/química , Desoxirribonuclease I , Escherichia coli/metabolismo , Genes Bacterianos , Ferro/metabolismo , Proteínas de Ligação ao Ferro , Dados de Sequência Molecular , Neisseria gonorrhoeae/metabolismo , Proteínas Periplásmicas de Ligação
14.
Mol Microbiol ; 15(1): 119-32, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-7752886

RESUMO

Citrate-dependent Fe3+ transport into Escherichia coli K-12 is induced by iron and citrate. The inducer is probably ferric dicitrate which does not have to be taken up into the cytoplasm to induce transcription of the fec transport genes. Two regulatory genes, fecI and fecR, located upstream of the fecABCDE transport genes, are required for induction. We report that in vivo the chromosomally encoded FecI protein activates transcription of the fecA and fecB transport genes in response to ferric citrate and the FecR protein. Cells expressing chromosomally and plasmid-encoded truncated FecR derivatives no longer responded to ferric citrate and expressed the fec transport genes constitutively. The smallest active FecR derivative contained 59 amino acid residues as compared to the 317 residues of wild-type FecR. Constitutive induction was lower than induction of the FecR wild-type strain by ferric citrate. It is concluded that the N-terminal portion of FecR activates FecI and that the C-terminal portion of FecR responds to ferric citrate. Transcription of the fec transport genes is positively regulated by FecI and FecR and negatively regulated by the Fe2(+)-Fur repressor. Transcription activation and repression may occur independently of each other.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Compostos Férricos/farmacologia , Genes Reguladores , Ferro/metabolismo , Proteínas de Membrana Transportadoras , Fator sigma/genética , Ativação Transcricional/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Sequência de Bases , Transporte Biológico , Clonagem Molecular , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Mutagênese/genética , Regiões Promotoras Genéticas/genética , Deleção de Sequência/genética
15.
Mol Microbiol ; 23(2): 333-44, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9044267

RESUMO

Ferric citrate induces transcription of the ferric citrate transport genes fecABCDE without entering the cells of Escherichia coli K-12. Point mutants of the outer membrane-receptor protein FecA are affected in induction independent of the FecA transport activity, suggesting that FecA is directly involved in induction. Alignment of FecA with the other ferric siderophore receptors of E. coli reveals an N-terminal extension in FecA that is not found in the receptors whose synthesis is not induced by their cognate ferric siderophores. In this study, we show that excision of the N-terminal region abolished the inducing activity of FecA, but retained its transport activity. Overproduction of the N-terminal FecA fragment inhibited FecA-dependent induction, but not transport. Constitutive expression caused by C-terminally truncated FecR derivatives was not inhibited by the N-terminal FecA fragment. The N-terminal region of FecA was localized in the periplasm, which indicates that FecA probably interacts with FecR, which is involved in signal transduction across the cytoplasmic membrane. Transcription initiation of the fec transport genes required the Ton system, consisting of TonB, ExbB, and ExbD, and was inhibited by carbonylcyanide-m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), which dissipate the electrochemical potential of the cytoplasmic membrane. fec transcription of mutant fecA4, which displays constitutive fec transcription in the absence of TonB, was not affected by CCCP. The data support a model that proposes initiation of fec transport gene transcription by binding of ferric citrate to FecA. The transcription initiation signal is transferred across the outer membrane through the activity of the Ton system at the expense of the electrochemical potential of the cytoplasmic membrane. The N-terminus of FecA interacts in the periplasm with the C-terminus of FecR, through which the signal is transferred across the cytoplasmic membrane into the cytoplasm, where it increases the activity of the sigma factor Fecl, which then directs the RNA polymerase to the fec promoter upstream of fecA.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Compostos Férricos/metabolismo , Receptores de Superfície Celular , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Transporte/genética , Escherichia coli/enzimologia , Proteínas de Membrana , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA