Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674004

RESUMO

Phenolic compounds, originating from industrial, agricultural, and urban sources, can leach into flowing waters, adversely affecting aquatic life, biodiversity, and compromising the quality of drinking water, posing potential health hazards to humans. Thus, monitoring and mitigating the presence of phenolic compounds in flowing waters are essential for preserving ecosystem integrity and safeguarding public health. This study explores the development and performance of an innovative sensor based on screen-printed electrode (SPE) modified with graphene (GPH), poly(3,4-ethylenedioxythiophene) (PEDOT), and tyrosinase (Ty), designed for water analysis, focusing on the manufacturing process and the obtained electroanalytical results. The proposed biosensor (SPE/GPH/PEDOT/Ty) was designed to achieve a high level of precision and sensitivity, as well as to allow efficient analytical recoveries. Special attention was given to the manufacturing process and optimization of the modifying elements' composition. This study highlights the potential of the biosensor as an efficient and reliable solution for water analysis. Modification with graphene, the synthesis and electropolymerization deposition of the PEDOT polymer, and tyrosinase immobilization contributed to obtaining a high-performance and robust biosensor, presenting promising perspectives in monitoring the quality of the aquatic environment. Regarding the electroanalytical experimental results, the detection limits (LODs) obtained with this biosensor are extremely low for all phenolic compounds (8.63 × 10-10 M for catechol, 7.72 × 10-10 M for 3-methoxycatechol, and 9.56 × 10-10 M for 4-methylcatechol), emphasizing its ability to accurately measure even subtle variations in the trace compound parameters. The enhanced sensitivity of the biosensor facilitates detection and quantification in river water samples. Analytical recovery is also an essential aspect, and the biosensor presents consistent and reproducible results. This feature significantly improves the reliability and usefulness of the biosensor in practical applications, making it suitable for monitoring industrial or river water.


Assuntos
Técnicas Biossensoriais , Compostos Bicíclicos Heterocíclicos com Pontes , Grafite , Monofenol Mono-Oxigenase , Fenóis , Polímeros , Rios , Poluentes Químicos da Água , Técnicas Biossensoriais/métodos , Grafite/química , Rios/química , Polímeros/química , Fenóis/análise , Poluentes Químicos da Água/análise , Compostos Bicíclicos Heterocíclicos com Pontes/química , Enzimas Imobilizadas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção
2.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769346

RESUMO

The classification of olive oils and the authentication of their biological or geographic origin are important issues for public health and for the olive oil market and related industries. The development of techniques for olive oil classification that are fast, easy to use, and suitable for online, in situ and remote operation is of high interest. In this study, the possibility of discriminating and classifying vegetable oils according to different criteria related to biological or geographical origin was assessed using cyclic voltammograms (CVs) as input data, obtained with electrochemical sensors based on carbonaceous nanomaterials and gold nanoparticles. In this context, 44 vegetable oil samples of different categories were analyzed and the capacity of the sensor array coupled with multivariate analysis was evaluated. The characteristics highlighted in voltammograms are related to the redox properties of the electroactive compounds, mainly phenolics, existing in the oils. Moreover, the antioxidant activity of the oils' hydrophilic fraction was also estimated by conventional spectrophotometric methods (1,1-diphenyl-2-picrylhydrazyl (DPPH) and galvinoxyl) and correlated with the voltammetric responses of the sensors. The percentage of DPPH and galvinoxyl inhibition was accurately predicted from the voltammetric data, with a correlation coefficients greater than 0.97 both in calibration and in validation. The results indicate that this method allows for a clear discrimination of oils from different biological or geographic origins.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Azeite de Oliva/química , Antioxidantes/análise , Ouro , Óleos de Plantas/química
3.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982366

RESUMO

Extra-virgin olive oil (EVOO) and virgin olive oil (VOO) are valuable natural products of great economic interest for their producing countries, and therefore, it is necessary to establish methods capable of proving the authenticity of these oils on the market. This work presents a methodology for the discrimination of olive oil and extra-virgin olive oil from other vegetable oils based on targeted and untargeted high-resolution mass spectrometry (HRMS) profiling of phenolic and triterpenic compounds coupled with multivariate statistical analysis of the data. Some phenolic compounds (cinnamic acid, coumaric acids, apigenin, pinocembrin, hydroxytyrosol and maslinic acid), secoiridoids (elenolic acid, ligstroside and oleocanthal) and lignans (pinoresinol and hydroxy and acetoxy derivatives) could be olive oil biomarkers, whereby these compounds are quantified in higher amounts in EVOO compared to other vegetable oils. The principal component analysis (PCA) performed based on the targeted compounds from the oil samples confirmed that cinnamic acid, coumaric acids, apigenin, pinocembrin, hydroxytyrosol and maslinic acid could be considered as tracers for olive oils authentication. The heat map profiles based on the untargeted HRMS data indicate a clear discrimination of the olive oils from the other vegetable oils. The proposed methodology could be extended to the authentication and classification of EVOOs depending on the variety, geographical origin, or adulteration practices.


Assuntos
Quimiometria , Óleos de Plantas , Azeite de Oliva/química , Óleos de Plantas/química , Ácidos Cumáricos , Apigenina , Iridoides , Espectrometria de Massas
4.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35808187

RESUMO

This work aims to achieve the simultaneous qualitative and quantitative determination of two hydroxycinnamic acids (ferulic acid and caffeic acid) from standard solutions and from a phyto-homeopathic product using a carbon nanofiber-based screen-printed sensor (CNF/SPE). The two compounds are mentioned in the manufacturer's specifications but without indicating their concentrations. The stability and reproducibility of the CNF/SPE were found to be effective and the sensitivity was high for both caffeic acid-CA (limit of detection 2.39 × 10-7 M) and ferrulic acid-FA (limit of detection 2.33 × 10-7 M). The antioxidant capacity of the compounds in the analyzed product was also determined by the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. The electrochemical method was efficient and less expensive than other analytical methods; therefore, its use can be extended for the detection of these phenolic compounds in various dietary supplements or pharmaceutical products.


Assuntos
Ácidos Cumáricos , Nanofibras , Ácidos Cafeicos/química , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Nanofibras/química , Reprodutibilidade dos Testes
5.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293426

RESUMO

Oleuropein (OLEU) is an important indicator of the quality and authenticity of extra virgin olive oils (EVOO). Electrochemical sensors and biosensors for the detection of oleuropein can be used to test the adulteration of extra virgin olive oils. The present study aimed at the qualitative and quantitative determination of oleuropein in commercial EVOO samples by applying electrochemical techniques, cyclic voltammetry (CV) and square wave voltammetry (SWV). The sensing devices used were two newly constructed enzyme biosensors, supported on single-layer carbon-nanotube-modified carbon screen-printed electrode (SPE/SWCNT) on whose surface tyrosinase (SPE/SWCNT/Tyr) and laccase (SPE/SWCNT/Lac) were immobilized, respectively. The active surfaces of the two biosensors were analyzed and characterized by different methods, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) and the results confirmed the efficient immobilization of the enzymes. SPE/SWCNT/Tyr was characterized by a low detection limit (LOD = 9.53 × 10-8 M) and a very good sensitivity (0.0718 µA·µM-1·cm-2) over a wide linearity range from 0.49 to 11.22 µM. The process occurring at the biosensor surface corresponds to kinetics (h = 0.90), and tyrosinase showed a high affinity towards OLEU. The tyrosinase-based biosensor was shown to have superior sensitive properties to the laccase-based one. Quantitative determination of OLEU in EVOOs was performed using SPE/SWCNT/Tyr and the results confirmed the presence of the compound in close amounts in the EVOOs analysed, proving that they have very good sensory properties.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Azeite de Oliva/química , Nanotubos de Carbono/química , Lacase , Monofenol Mono-Oxigenase , Técnicas Biossensoriais/métodos , Eletrodos
6.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163145

RESUMO

Recently, the studies on developing sensors and biosensors-with an obvious interdisciplinary character-have drawn the attention of many researchers specializing in various fundamental, but also complex domains such as chemistry, biochemistry, physics, biophysics, biology, bio-pharma-medicine, and bioengineering. Along these lines, the present paper is structured into three parts, and is aimed at synthesizing the most relevant studies on the construction and functioning of versatile devices, of electrochemical sensors and biosensors, respectively. The first part presents examples of the most representative scientific research focusing on the role and the importance of the phenylalanine, tyrosine, and tryptophan amino acids, selected depending on their chemical structure and their impact on the central nervous system. The second part is dedicated to presenting and exemplifying conductor polymers and molecularly imprinted polymers used as sensitive materials in achieving electrochemical sensors and biosensors. The last part of the review analyzes the sensors and biosensors developed so far to detect amino acids with the aid of conductor polymers and molecularly imprinted polymers from the point of view of the performances obtained, with emphasis on the detection methods, on the electrochemical reactions that take place upon detection, and on the electroanalytical performances. The present study was carried out with a view to highlighting, for the benefit of specialists in medicine and pharmacy, the possibility of achieving and purchasing efficient devices that might be used in the quality control of medicines, as well as in studying and monitoring diseases associated with these amino acids.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Polímeros Molecularmente Impressos/química , Fenilalanina/análise , Triptofano/análise , Tirosina/análise , Aminoácidos/análise , Polímeros/química
7.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012400

RESUMO

Hydroxytyrosol (HT) is an important marker for the authenticity and quality assessment of extra virgin olive oils (EVOO). The aim of the study was the qualitative and quantitative determination of hydroxytyrosol in commercial extra virgin olive oils of different origins and varieties using a newly developed biosensor based on a screen-printed electrode modified with single-layer carbon nanotubes and tyrosinase (SPE-SWCNT-Ty). The enzyme was immobilized on a carbon-based screen-printed electrode previously modified with single-layer carbon nanotubes (SPE-SWCNT-Ty) by the drop-and-dry method, followed by cross-linking with glutaraldehyde. The modified electrode surface was characterized by different methods, including electrochemical (cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS)) and spectrometric (Fourier transform infrared (FTIR) spectroscopy) methods. Cyclic voltammetry was used for the quantitative determination of HT, obtaining a detection limit of 3.49 × 10-8 M and a quantification limit of 1.0 × 10-7 M, with a wide linearity range (0.49-15.602 µM). The electrochemical performance of the SPE-SWCNT-Ty biosensor was compared with that of the modified SPE-SWCNT sensor, and the results showed increased selectivity and sensitivity of the biosensor due to the electrocatalytic activity of tyrosinase. The results obtained from the quantitative determination of HT showed that commercial EVOOs contain significant amounts of HT, proving the high quality of the finished products. The determination of the antiradical activity of HT was carried out spectrophotometrically using the free reagent galvinoxyl. The results showed that there is a very good correlation between the antiradical capacity of EVOOs, the voltammetric response and implicitly the increased concentration of HT. SPE-SWCNT-Ty has multiple advantages such as sensitivity, selectivity, feasibility and low cost and could be used in routine analysis for quality control of food products such as vegetable oils.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Monofenol Mono-Oxigenase , Nanotubos de Carbono/química , Azeite de Oliva/química , Álcool Feniletílico/análogos & derivados
8.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897695

RESUMO

The analysis of antioxidants in different foodstuffs has become an active area of research, which has led to many recently developed antioxidant assays. Many antioxidants exhibit inherent electroactivity, and, therefore, the use of electrochemical methods could be a viable approach for evaluating the overall antioxidant activity of a matrix of nutraceuticals without the need for adding reactive species. Green tea is believed to be a healthy beverage due to a number of therapeutic benefits. Catechin, one of its constituents, is an important antioxidant and possesses free radical scavenging abilities. The present paper describes the electrochemical properties of three screen-printed electrodes (SPEs), the first one based on carbon nanotubes (CNTs), the second one based on gold nanoparticles (GNPs) and the third one based on carbon nanotubes and gold nanoparticles (CNTs-GNPs). All three electrodes were modified with the laccase (Lac) enzyme, using glutaraldehyde as a cross-linking agent between the amino groups on the laccase and aldehyde groups of the reticulation agent. As this enzyme is a thermostable catalyst, the performance of the biosensors has been greatly improved. Electro-oxidative properties of catechin were investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), and these demonstrated that the association of CNTs with GNPs significantly improved the sensitivity and selectivity of the biosensor. The corresponding limit of detection (LOD) was estimated to be 5.6 × 10-8 M catechin at the CNT-Lac/SPE, 1.3 × 10-7 M at the GNP-Lac/SPE and 4.9 × 10-8 M at the CNT-GNP-Lac/SPE. The biosensors were subjected to nutraceutical formulations containing green tea in order to study their catechin content, using CNT-GNP-Lac/SPE, through DPV. Using a paired t-test, the catechin content estimated was in agreement with the manufacturer's specification. In addition, the relationship between the CNT-GNP-Lac/SPE response at a specific potential and the antioxidant activity of nutraceuticals, as determined by conventional spectrophotometric methods (DPPH, galvinoxyl and ABTS), is discussed in the context of developing a fast biosensor for the relative antioxidant activity quantification.


Assuntos
Técnicas Biossensoriais , Catequina , Nanopartículas Metálicas , Nanotubos de Carbono , Antioxidantes/análise , Antioxidantes/farmacologia , Técnicas Biossensoriais/métodos , Catequina/química , Suplementos Nutricionais , Eletrodos , Ouro/química , Lacase , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Chá
9.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36555346

RESUMO

In addition to their antioxidant and antimicrobial action in functional foods, beverages, and in some dermato-cosmetic products, olive phenolic compounds are also recognized for their role in the prevention of diabetes and inflammation, treatment of heart disease and, consequently, of the numerous chronic diseases mediated by the free radicals. In recent years, attention has increased, in particular, regarding one of the most important compound in extra virgin olive oil (EVOO) having glycosidic structure, namely verbocoside, due to the existence in the literature of numerous studies demonstrating its remarkable contribution to the prophylaxis and treatment of various disorders of the human body. The purpose of this study was the qualitative and quantitative determination of verbascoside in commercial EVOOs from different regions by means of a newly developed sensor based on a screen-printed carbon electrode (SPCE) modified with graphene oxide (GPHOX), on the surface of which a pentapeptide was immobilized by means of glutaraldehyde as cross-linking agent. The modified electrode surface was investigated using both Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) methods. This newly developed sensor has shown a high sensibility compared to the unmodified electrode, a low detection limit (LOD) of up to 9.38 × 10-8 M, and a wide linearity range between 0.1 µM and 10.55 µM. The applicability of the modified sensor was confirmed by detecting verbascoside in ten different EVOOs samples using the cyclic voltammetry (CV) method, with very good results. The validation of the electroanalytical method was performed by using the standard addition method with very good recoveries in the range of 97.48-103.77%.


Assuntos
Antioxidantes , Glucosídeos , Humanos , Azeite de Oliva/química , Fenóis , Eletrodos , Técnicas Eletroquímicas
10.
Sensors (Basel) ; 21(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34577507

RESUMO

Levodopa is a precursor of dopamine, having important beneficial effects in the treatment of Parkinson's disease. In this study, levodopa was accurately detected by means of cyclic voltammetry using carbon-based (C-SPCE), mesoporous carbon (MC-SPCE) and ordered mesoporous carbon (OMC-SPCE)-modified screen-printed sensors. Screen-printed carbon sensors were initially used for the electrochemical detection of levodopa in a 10-3 M solution at pH 7.0. The mesoporous carbon with an organized structure led to better electroanalysis results and to lower detection and quantification limits of the OMC-SPCE sensor as compared to the other two studied sensors. The range of linearity obtained and the low values of the detection (0.290 µM) and quantification (0.966 µM) limit demonstrate the high sensitivity and accuracy of the method for the determination of levodopa in real samples. Therefore, levodopa was detected by means of OMC-SPCE in three dietary supplements produced by different manufacturers and having various concentrations of the active compound, levodopa. The results obtained by cyclic voltammetry were compared with those obtained by using the FTIR method and no significant differences were observed. OMC-SPCE proved to be stable, and the electrochemical responses did not vary by more than 3% in repeated immersions in a solution with the same concentration of levodopa. In addition, the interfering compounds did not significantly influence the peaks related to the presence of levodopa in the solution to be analyzed.


Assuntos
Carbono , Levodopa , Dopamina , Eletrodos
11.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502203

RESUMO

The present paper developed a new enzymatic biosensor whose support is a screen-printed electrode based on carbon nanofibers modified with cobalt phthalocyanine and laccase (CNF-CoPc-Lac/SPE) to determine the p-coumaric acid (PCA) content by cyclic voltammetry and square wave voltammetry. Sensor modification was achieved by the casting and cross-linking technique, using glutaraldehyde as a reticulation agent. The biosensor's response showed the PCA redox processes in a very stable and sensitive manner. The calibration curve was developed for the concentration range of p-coumaric acid of 0.1-202.5 µM, using cyclic voltammetry and chronoamperometry. The biosensor yielded optimal results for the linearity range 0.4-6.4 µM and stood out by low LOD and LOQ values, i.e., 4.83 × 10-7 M and 1.61 × 10-6 M, respectively. PCA was successfully determined in three phytoproducts of complex composition. The results obtained by the voltammetric method were compared to the ones obtained by the FTIR method. The amount of p-coumaric acid determined by means of CNF-CoPc-Lac/SPE was close to the one obtained by the standard spectrometric method.


Assuntos
Técnicas Biossensoriais/métodos , Carbono/química , Ácidos Cumáricos/análise , Indóis/química , Lacase/química , Nanofibras/química , Compostos Organometálicos/química , Compostos Fitoquímicos/química , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção
12.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445600

RESUMO

The present study describes the electrochemical properties of three screen-printed electrodes (SPEs), the first electrode being carbon-based (C), the second graphene-based (GPH), and the third based on GPH modified with gold nanoparticles (GNP). These electrodes were used for the study of the electrochemical behavior of chlorogenic acid in different aqueous solutions, at pH = 7. In chlorogenic acid solution, a redox process was noticed in the case of all three electrodes; GPH and GNP significantly improved the sensor response regarding sensitivity and reversibility, a fact demonstrated by characterizing the sensor by cyclic voltammetry in potassium ferrocyanide, which corresponds to the exchange of two electrons and two protons. Moreover, the calibration curves for each sensor were developed, subsequently calculating the detection limits (LOD) and the quantification limits (LOQ). Low LOD and LOQ were obtained, the best-of the order of 10-7 M (LOD = 0.62 × 10-7 M; LOQ = 1.97 × 10-7 M)-being obtained in the case of GPH-GNP-SPE, which demonstrates that the method may be applied for determining chlorogenic acid in real samples. Thus, the sensors were successfully used for the quantitative determination of chlorogenic acid in three nutraceutical products. The validation of the results was done using the FTIR method. The results obtained by cyclic voltammetry were in accordance with those obtained by the spectrometric method, without significant differences from a statistical point of view.


Assuntos
Técnicas Biossensoriais/métodos , Ácido Clorogênico/análise , Suplementos Nutricionais/análise , Técnicas Eletroquímicas/métodos , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Eletrodos , Limite de Detecção
13.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299146

RESUMO

Good health, of vital importance in order to carry out our daily routine, consists of both physical and mental health. Tyrosine (Tyr) deficiency as well as its excess are issues that can affect mental health and can generate disorders such as depression, anxiety, or stress. Tyr is the amino acid (AA) responsible for maintaining good mental health, and for this reason, the present research presents the development of new electrochemical sensors modified with polypyrrole (PPy) doped with different doping agents such as potassium hexacyanoferrate (II) (FeCN), sodium nitroprusside (NP), and sodium dodecyl sulfate (SDS) for a selective and sensitive detection of Tyr. The development of the sensors was carried out by chronoamperometry (CA) and the electrochemical characterization was carried out by cyclic voltammetry (CV). The detection limits (LOD) obtained with each modified sensor were 8.2 × 10-8 M in the case of PPy /FeCN-SPCE, 4.3 × 10-7 M in the case of PPy/NP-SPCE, and of 3.51 × 10-7 M in the case of PPy/SDS-SPCE, thus demonstrating a good sensitivity of these sensors detecting L-Tyr. The validation of sensors was carried out through quantification of L-Tyr from three pharmaceutical products by the standard addition method with recoveries in the range 99.92-103.97%. Thus, the sensors present adequate selectivity and can be used in the pharmaceutical and medical fields.


Assuntos
Carbono/química , Eletrodos , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Polímeros/química , Pirróis/química , Tirosina/análise , Técnicas Eletroquímicas
14.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884509

RESUMO

Electrochemical sensors, sensor arrays and biosensors, alongside chemometric instruments, have progressed remarkably of late, being used on a wide scale in the qualitative and quantitative evaluation of olive oil. Olive oil is a natural product of significant importance, since it is a rich source of bioactive compounds with nutritional and therapeutic properties, and its quality is important both for consumers and for distributors. This review aims at analysing the progress reported in the literature regarding the use of devices based on electrochemical (bio)sensors to evaluate the bioactive compounds in olive oil. The main advantages and limitations of these approaches on construction technique, analysed compounds, calculus models, as well as results obtained, are discussed in view of estimation of future progress related to achieving a portable, practical and rapid miniature device for analysing the quality of virgin olive oil (VOO) at different stages in the manufacturing process.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Azeite de Oliva/análise , Azeite de Oliva/normas , Controle de Qualidade , Estudos de Avaliação como Assunto
15.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884943

RESUMO

Chlorogenic acid (5-O-caffeoylquinic acid) is a phenolic compound from the hydroxycinnamic acid family. Epidemiological, biological, and biochemical studies concur to support the beneficial role of chlorogenic acid in human health, along with other dietary phenolic compounds. Thus, chlorogenic acid has been reported to exert inhibitory effects on carcinogenesis in the large intestine, liver, and tongue, and a protective action on oxidative stress in vivo, together with anti-inflammatory, antidiabetic and antihypertensive activities. It is also claimed to have antifungal, antibacterial and antiviral effects with relatively low toxicity and side effects, alongside properties that do not lead to antimicrobial resistance. Due to its importance, numerous methods for determining chlorogenic acid (CGA), as well as for its derivatives from coffee beans and other plants, were elaborated. The most frequently used methods are infrared spectroscopy, high performance liquid chromatography (HPLC), capillary electrophoresis, liquid chromatography-mass spectrometry and chemiluminescence. Although these methods proved to be efficient for quantifying CGA and its derived products, a number of deficiencies were identified: they are time consuming, laborious, and require expensive instruments. Therefore, electrochemical methods have been developed and used in the determination of CGA in different nutraceuticals or food products. The present review aims to present the main progresses and performance characteristics of electrochemical sensors and biosensors used to detect CGA, as it is reported in a high number of relevant scientific papers published mainly in the last decade.


Assuntos
Técnicas Biossensoriais/métodos , Ácido Clorogênico/análise , Plantas/química , Ácido Clorogênico/farmacologia , Coffea/química , Técnicas Eletroquímicas , Humanos , Extratos Vegetais/análise
16.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062799

RESUMO

In recent years, researchers have focused on developing simple and efficient methods based on electrochemical biosensors to determine hydroxycinnamic acids from various real samples (wine, beer, propolis, tea, and coffee). Enzymatic biosensors represent a promising, low-cost technology for the direct monitoring of these biologically important compounds, which implies a fast response and simple sample processing procedures. The present review aims at highlighting the structural features of this class of compounds and the importance of hydroxycinnamic acids for the human body, as well as presenting a series of enzymatic biosensors commonly used to quantify these phenolic compounds. Enzyme immobilization techniques on support electrodes are very important for their stability and for obtaining adequate results. The following sections of this review will briefly describe some of the laccase (Lac) and tyrosinase (Tyr) biosensors used for determining the main hydroxycinnamic acids of interest in the food or cosmetics industry. Considering relevant studies in the field, the fact has been noticed that there is a greater number of studies on laccase-based biosensors as compared to those based on tyrosinase for the detection of hydroxycinnamic acids. Significant progress has been made in relation to using the synergy of nanomaterials and nanocomposites for more stable and efficient enzyme immobilization. These nanomaterials are mainly carbon- and/or polymer-based nanostructures and metallic nanoparticles which provide a suitable environment for maintaining the biocatalytic activity of the enzyme and for increasing the rate of electron transport.


Assuntos
Técnicas Biossensoriais , Ácidos Cumáricos/isolamento & purificação , Lacase/isolamento & purificação , Monofenol Mono-Oxigenase/isolamento & purificação , Carbono/química , Ácidos Cumáricos/química , Técnicas Eletroquímicas , Enzimas Imobilizadas/química , Humanos , Lacase/química , Nanopartículas Metálicas/química , Monofenol Mono-Oxigenase/química
17.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806141

RESUMO

The study of antioxidants and their implications in various fields, from food engineering to medicine and pharmacy, is of major interest to the scientific community. The present paper is a critical presentation of the most important tests used to determine the antioxidant activity, detection mechanism, applicability, advantages and disadvantages of these methods. Out of the tests based on the transfer of a hydrogen atom, the following were presented: the Oxygen Radical Absorption Capacity (ORAC) test, the Hydroxyl Radical Antioxidant Capacity (HORAC) test, the Total Peroxyl Radical Trapping Antioxidant Parameter (TRAP) test, and the Total Oxyradical Scavenging Capacity (TOSC) test. The tests based on the transfer of one electron include the Cupric Reducing Antioxidant Power (CUPRAC) test, the Ferric Reducing Antioxidant Power (FRAP) test, the Folin-Ciocalteu test. Mixed tests, including the transfer of both a hydrogen atom and an electron, include the 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) test, and the [2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl] (DPPH) test. All these assays are based on chemical reactions and assessing the kinetics or reaching the equilibrium state relies on spectrophotometry, presupposing the occurrence of characteristic colours or the discolouration of the solutions to be analysed, which are processes monitored by specific wavelength adsorption. These assays were successfully applied in antioxidant analysis or the determination of the antioxidant capacity of complex samples. As a complementary method in such studies, one may use methods based on electrochemical (bio)sensors, requiring stages of calibration and validation. The use of chemical methods together with electrochemical methods may result in clarification of the operating mechanisms and kinetics of the processes involving several antioxidants.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/análise , Sequestradores de Radicais Livres/farmacologia , Radical Hidroxila/farmacologia , Animais , Benzotiazóis/química , Bioensaio/métodos , Compostos de Bifenilo , Técnicas Eletroquímicas , Humanos , Hidrogênio/química , Cinética , Oxigênio/química , Fenóis/análise , Picratos , Espécies Reativas de Oxigênio/metabolismo , Ácidos Sulfônicos/química , Superóxido Dismutase/metabolismo
18.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298934

RESUMO

In this paper, the electrochemical behavior of two types of sensors based on modified screen-printed electrodes (one screen-printed electrode based on carbon (SPCE) and another screen-printed electrode modified with Prussian Blue (PB/SPCE)) was studied with the aim of sensitive detection of diosmin, an active pharmaceutical compound from the class of flavonoids. The scan electron microscopy technique was used for the morphological characterization of PB/SPCE. The preliminary analysis assessed the electrochemical behavior of SPCE and PB/SPCE in KCl solution and in a double solution of potassium ferrocyanide-potassium chloride. It was shown that the active area of PB/SPCE is superior to the one of SPCE, the greater sensitivity being related with the presence of the electroactive modifier. Similarly, in the case of diosmin detection, the PB/SPCE sensor detect more sensitivity the diosmin due to the electrocatalytic effect of PB. From the study of the influence of reaction rate on the sensor's electrochemical response, it was shown that the detection process is controlled by the adsorption process, the degree of surface coverage with electroactive molecules being higher in the case of PB/SPCE. From the PB/SPCE calibration curve, it wasdetermined that it has high sensitivity and low detection and quantification limit values (limit of detection 5.22 × 10-8 M). The applicability of the PB/SPCE sensor was confirmed by sensitive analysis of diosmin in pharmaceutical products. The voltammetric method is suitable for the detection and quantification of diosmin in pharmaceutical products. The method is simple, accurate, and quick and can be used in routine analysis in the examination of the quality of pharmaceutical products and other types of samples.


Assuntos
Diosmina/química , Preparações Farmacêuticas/química , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Sensibilidade e Especificidade
19.
Sensors (Basel) ; 20(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354070

RESUMO

Phenylalanine is an amino acid found in breast milk and in many foods, being an essential nutrient. This amino acid is very important for the human body because it is transformed into tyrosine and, subsequently, into catecholamine neurotransmitters. However, there are individuals who were born with a genetic disorder called phenylketonuria. The accumulation of phenylalanine and of some metabolites in the body is dangerous and may cause convulsions, brain damage and mental retardation. Determining the concentration of phenylalanine in different biologic fluids is very important because it can provide information about the health status of the individuals envisaged. Since such determinations may be made by using electrochemical sensors and biosensors, numerous researchers have developed such sensors for phenylalanine detection and different sensitive materials were used in order to improve the selectivity, sensitivity and detection limit. The present review aims at presenting the design and performance of some electrochemical bio (sensors) traditionally used for phenylalanine detection as reported in a series of relevant scientific papers published in the last decade.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Fenilalanina/química , Desenho de Equipamento , Humanos , Fenilcetonúrias/metabolismo
20.
Sensors (Basel) ; 20(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255463

RESUMO

The present paper deals with the electrochemical behavior of three types of sensors based on modified screen-printed electrodes (SPEs): a sensor based on carbon nanofibers (CNF/SPE), a sensor based on nanofibers of carbon modified with gold nanoparticles (CNF-GNP/SPE) and a biosensor based on nanofibers of carbon modified with gold nanoparticles and tyrosinase (CNF-GNP-Ty/SPE). To prepare the biosensor, the tyrosinase (Ty) was immobilized on the surface of the electrode already modified with carbon nanofibers and gold nanoparticles, by the drop-and-dry technique. The electrochemical properties of the three electrodes were studied by cyclic voltammetry in electroactive solutions, and the position and shape of the active redox peaks are according to the nature of the materials modifying the electrodes. In the case of ferulic acid, a series of characteristic peaks were observed, the processes being more intense for the biosensor, with the higher sensitivity and selectivity being due to the immobilization of tyrosinase, a specific enzyme for phenolic compounds. The calibration curve was subsequently created using CNF-GNP-Ty/SPE in ferulic acid solutions of various concentrations in the range 0.1-129.6 µM. This new biosensor allowed low values of the detection threshold and quantification limit, 2.89 × 10-9 mol·L-1 and 9.64 × 10-9 mol·L-1, respectively, which shows that the electroanalytical method is feasible for quantifying ferulic acid in real samples. The ferulic acid was quantitatively determined in three cosmetic products by means of the CNF-GNP-Ty/SPE biosensor. The results obtained were validated by means of the spectrometric method in the infrared range, the differences between the values of the ferulic acid concentrations obtained by the two methods being under 5%.


Assuntos
Técnicas Biossensoriais , Cosméticos , Ácidos Cumáricos/análise , Nanopartículas Metálicas , Nanofibras , Carbono , Técnicas Eletroquímicas , Eletrodos , Ouro , Monofenol Mono-Oxigenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA