Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 289(23): 16200-13, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24742672

RESUMO

Adiponectin is a well described anti-inflammatory adipokine that is highly abundant in serum. Previous reports have found that adiponectin deficiency promotes cardiovascular and metabolic dysfunction in murine models, whereas its overexpression is protective. Two candidate adiponectin receptors, AdipoR1 and AdipoR2, are uncharacterized with regard to cardiovascular tissue homeostasis, and their in vivo metabolic functions remain controversial. Here we subjected AdipoR1- and AdipoR2-deficient mice to chronic hind limb ischemic surgery. Blood flow recovery in AdipoR1-deficient mice was similar to wild-type; however, revascularization in AdipoR2-deficient mice was severely attenuated. Treatment with adiponectin enhanced the recovery of wild-type mice but failed to rescue the impairment observed in AdipoR2-deficient mice. In view of this divergent receptor function in the hind limb ischemia model, AdipoR1- and AdipoR2-deficient mice were also evaluated in a model of diet-induced obesity. Strikingly, AdipoR1-deficient mice developed severe metabolic dysfunction compared with wild type, whereas AdipoR2-deficient mice were protected from diet-induced weight gain and metabolic perturbations. These data show that AdipoR2, but not AdipoR1, is functionally important in an in vivo model of ischemia-induced revascularization and that its expression is essential for the revascularization actions of adiponectin. These data also show that, in contrast to revascularization responses, AdipoR1, but not AdipoR2 deficiency, leads to diet-induced metabolic dysfunction, revealing that these receptors have highly divergent roles in vascular and metabolic homeostasis.


Assuntos
Doenças Metabólicas/fisiopatologia , Neovascularização Fisiológica , Receptores de Adiponectina/fisiologia , Animais , Extremidades/irrigação sanguínea , Camundongos , Camundongos Knockout
2.
Immunology ; 142(3): 363-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24456224

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are known to have many immunomodulatory effects. We have previously shown that the PPARγ agonist rosiglitazone is beneficial when used early in prevention of disease in murine models of systemic lupus erythematosus (SLE) and SLE-related atherosclerosis. In this report, we demonstrate that another PPARγ agonist, pioglitazone is also beneficial as a treatment for early murine lupus, indicating that this is a class effect and not agent-specific. We further attempt to define the ability of PPARγ agonists to ameliorate established or severe autoimmune disease using two mouse models: the MRL.lpr SLE model and the gld.apoE(-/-) model of accelerated atherosclerosis and SLE. We demonstrate that, in contrast to the marked amelioration of disease seen when PPARγ agonist treatment was started before disease onset, treatment with rosiglitazone after disease onset in MRL.lpr or gld.apoE(-/-) mice had minimal beneficial effect on the development of the autoimmune phenotype; however, rosiglitazone treatment remained highly effective at reducing lupus-associated atherosclerosis in gld.apoE(-/-) mice after disease onset or when mice were maintained on a high cholesterol Western diet. These results suggest that beneficial effects of PPARγ agonists on the development of autoimmunity might be limited to the early stages of disease, but that atherosclerosis, a major cause of death in SLE patients, may be ameliorated even in established or severe disease.


Assuntos
Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/prevenção & controle , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/imunologia , Pioglitazona , Rosiglitazona , Tiazolidinedionas/química , Tiazolidinedionas/uso terapêutico
3.
J Mol Cell Cardiol ; 52(2): 474-84, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21952104

RESUMO

Adiponectin is a cardioprotective adipokine derived predominantly from visceral fat. We recently demonstrated that exogenous adiponectin induces vascular smooth muscle cell (VSMC) differentiation via repression of mTORC1 and FoxO4. Here we report for the first time that VSMC express and secrete adiponectin, which acts in an autocrine and paracrine manner to regulate VSMC contractile phenotype. Adiponectin was found to be expressed in human coronary artery and mouse aortic VSMC. Importantly, siRNA knock-down of endogenous adiponectin in VSMC significantly reduced the expression of VSMC contractile proteins. Contractile protein deficiency was also observed in primary VSMC isolated from Adiponectin(-/-) mice. This deficiency could be rescued by culturing Adiponectin(-/-) VSMC in conditioned media from wild type (WT) VSMC. Moreover, the paracrine effect of VSMC-derived adiponectin was confirmed as adiponectin neutralizing antibody blocked the rescue. Overexpressed adiponectin also exerted paracrine effects on neighboring untransfected VSMC, which was also blocked by adiponectin neutralizing antibody. Interestingly, adiponectin expression was inducible by the PPARγ agonist rosiglitazone. Our data support an important role for VSMC-derived adiponectin in maintaining VSMC contractile phenotype, contributing to critical cardioprotective functions in the vascular wall. This article is part of a Special Issue entitled "Local Signaling in Myocytes".


Assuntos
Adiponectina/metabolismo , Contração Muscular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Comunicação Parácrina , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/genética , Animais , Retículo Endoplasmático/metabolismo , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular/genética , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , PPAR gama/agonistas , Transporte Proteico , Rosiglitazona , Tiazolidinedionas/farmacologia
4.
Am J Respir Cell Mol Biol ; 46(2): 207-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21903873

RESUMO

Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow-derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the T(H)2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10-induced and IL-10-secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma.


Assuntos
Asma/prevenção & controle , Células da Medula Óssea/patologia , Animais , Asma/patologia , Líquido da Lavagem Broncoalveolar , Masculino , Camundongos , Camundongos Endogâmicos BALB C
5.
Metabolism ; 65(1): 26-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26683794

RESUMO

OBJECTIVE: The obesity epidemic in the United States, as well as the accompanying condition of type 2 diabetes, puts a majority of the population at an increased risk of developing cardiovascular diseases including coronary artery disease, stroke, and myocardial infarction. In contrast to white adipose tissue (WAT), brown adipose tissue (BAT) is well vascularized, rich in mitochondria, and highly oxidative. While it is known that the angiogenic factor VEGF-A is required for brown adipocyte development, the functional consequences and exact mechanism remain to be elucidated. Here, we show that VEGF-A plays an essential autocrine role in the function of BAT. MATERIALS AND METHODS: Mouse models were generated with an adipose-specific and macrophage-specific ablation of VEGF-A. Adipose tissue characteristics and thermogenic response were analyzed in vivo, and mitochondrial morphology and oxidative respiration were analyzed in vitro to assess effects of endogenous VEGF-A ablation. RESULTS: VEGF-A expression levels are highest in adipocyte precursors compared to immune or endothelial cell populations within both WAT and BAT. Loss of VEGF-A in adipocytes, but not macrophages, results in decreased adipose tissue vascularization, with remarkably diminished thermogenic capacity in vivo. Complete ablation of endogenous VEGF-A decreases oxidative capacity of mitochondria in brown adipocytes. Further, acute ablation of VEGF-A in brown adipocytes in vitro impairs mitochondrial respiration, despite similar mitochondrial mass compared to controls. CONCLUSION: These data demonstrate that VEGF-A serves to orchestrate the acquisition of thermogenic capacity of brown adipocytes through mitochondrial function in conjunction with the recruitment of blood vessels.


Assuntos
Adipócitos Marrons/metabolismo , Mitocôndrias/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Adipócitos Marrons/química , Animais , Camundongos , Especificidade de Órgãos , Fator A de Crescimento do Endotélio Vascular/análise
6.
Cell Metab ; 24(6): 835-847, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974179

RESUMO

Brown-like adipocytes exist in several adipose depots including white (WAT) as well as brown (BAT). Activation of these UCP1+ cells is a potential therapeutic strategy to combat obesity. Studies have shown that posttranslational modifications of PPARγ regulate select adipocyte programs. Deacetylation of K268 and K293 in the ligand-binding domain of PPARγ by Sirt1 induces browning of WAT. Phosphorylation of S273 of PPARγ by CDK5 or ERK stimulates a diabetogenic program of gene expression in WAT. Here, we report that roscovitine, a CDK inhibitor, prevents S273 phosphorylation and promotes formation of UCP1+ (brite) adipocytes in WAT. It also enhances energy expenditure as well as prevents diet-induced obesity and insulin resistance. Analysis of fluorescence-activated cell-sorted UCP1+ adipocytes shows that the mRNA signature of brite adipocytes is distinct from beige adipocytes, which arise through catecholamine signaling. These results suggest that brown-like adipocytes in WAT may arise from multiple origins.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Purinas/farmacologia , Proteína Desacopladora 1/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Dieta , Metabolismo Energético/efeitos dos fármacos , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Roscovitina , Serina/metabolismo , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/genética
7.
Circulation ; 108(4): 479-85, 2003 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-12860919

RESUMO

BACKGROUND: Hedgehog (Hh) proteins are morphogens regulating epithelial-mesenchymal signaling during several crucial processes of embryonic development, including muscle patterning. Sonic (Shh), Indian (Ihh), and Desert (Dhh) hedgehog constitute the repertoire of Hh genes in humans. The activities of all 3 are transduced via the Patched (Ptc1) receptor. Recent observations indicate that exogenous administration of Shh induces angiogenesis. Here, we studied whether the endogenous Hh pathway, in addition to its functions during embryogenesis, plays a physiological role in muscle regeneration after ischemia in adults. METHODS AND RESULTS: We found that skeletal muscle ischemia induces strong local upregulation of Shh mRNA and protein. In addition, the Ptc1 receptor is activated in interstitial mesenchymal cells within the ischemic area, indicating that these cells respond to Shh and that the Shh pathway is functional. We also found that Shh-responding cells produce vascular endothelial growth factor under ischemic conditions and that systemic treatment with a Shh-blocking antibody inhibits the local angiogenic response and the upregulation of vascular endothelial growth factor. CONCLUSIONS: Our study shows that the Hh signaling may be recapitulated postnatally in adult and fully differentiated muscular tissues and has a regulatory role on angiogenesis during muscle regeneration after ischemia. These findings demonstrate a novel biological activity for the Hh pathway with both fundamental and potential therapeutic implications.


Assuntos
Isquemia/fisiopatologia , Músculo Esquelético/fisiopatologia , Transdução de Sinais/fisiologia , Transativadores/fisiologia , Animais , Anticorpos Bloqueadores/farmacologia , Western Blotting , Modelos Animais de Doenças , Fatores de Crescimento Endotelial/biossíntese , Feminino , Proteínas Hedgehog , Membro Posterior/irrigação sanguínea , Membro Posterior/fisiopatologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular , Isquemia/patologia , Linfocinas/biossíntese , Masculino , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Receptores Patched , Receptor Patched-1 , RNA Mensageiro/metabolismo , Receptores de Superfície Celular , Transativadores/antagonistas & inibidores , Transativadores/genética , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
8.
Int J Parasitol ; 45(4): 203-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25666929

RESUMO

ES-62 is an anti-inflammatory phosphorylcholine-containing glycoprotein secreted by the filarial nematode Acanthocheilonema viteae. Accelerated atherosclerosis frequently occurs in systemic lupus erythematosus, resulting in substantial cardiovascular morbidity and mortality. We examined the effects of ES-62 in the gld.apoE(-/-) mouse model of this condition. Treatment with ES-62 did not substantially modulate renal pathology but caused decreased anti-nuclear autoantibody levels. Moreover, a striking 60% reduction in aortic atherosclerotic lesions was observed, with an associated decrease in macrophages and fibrosis. We believe that these latter findings constitute the first example of a defined parasitic worm product with therapeutic potential in atherosclerosis: ES-62-based drugs may represent a novel approach to control accelerated atherosclerosis in systemic lupus erythematosus.


Assuntos
Aterosclerose/prevenção & controle , Proteínas de Helminto/administração & dosagem , Fatores Imunológicos/administração & dosagem , Lúpus Eritematoso Sistêmico/complicações , Animais , Anticorpos Antinucleares/sangue , Aterosclerose/patologia , Modelos Animais de Doenças , Fibrose/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout
9.
Arthritis Rheumatol ; 67(12): 3146-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26315890

RESUMO

OBJECTIVE: Polymorphisms in the transcription factor interferon regulatory factor 5 (IRF5) are associated with an increased risk of developing rheumatoid arthritis (RA). This study was undertaken to determine the role of IRF5 in a mouse model of arthritis development. METHODS: K/BxN serum-transfer arthritis was induced in mice deficient in IRF5, or lacking IRF5 only in myeloid cells, and arthritis severity was evaluated. K/BxN arthritis was also induced in mice deficient in TRIF, Toll-like receptor 2 (TLR2), TLR3, TLR4, and TLR7 to determine the pathways through which IRF5 might promote arthritis. In vitro studies were performed to determine the role of IRF5 in interleukin-1 (IL-1) receptor and TLR signaling. RESULTS: Arthritis severity was reduced in IRF5-deficient, TRIF-deficient, TLR3-deficient, and TLR7-deficient mice. The expression of multiple genes regulating neutrophil recruitment or function and bioactive IL-1ß formation was reduced in the joints during active arthritis in IRF5-deficient mice. In vitro studies showed that TLR7 and the TRIF-dependent TLR3 pathway induce proinflammatory cytokine production in disease-relevant cell types in an IRF5-dependent manner. CONCLUSION: Our findings indicate that IRF5 contributes to disease pathogenesis in inflammatory arthritis. This is likely due at least in part to the role of IRF5 in mediating proinflammatory cytokine production downstream of TLR7 and TLR3. Since TLR7 and TLR3 are both RNA-sensing TLRs, this suggests that endogenous RNA ligands present in the inflamed joint promote arthritis development. These findings may be relevant to human RA, since RNA capable of activating TLR7 and TLR3 is present in synovial fluid and TLR7 and TLR3 are up-regulated in the joints of RA patients.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Artrite Experimental/genética , Artrite Reumatoide/genética , Fatores Reguladores de Interferon/genética , Glicoproteínas de Membrana/genética , Células Mieloides/metabolismo , Receptor 3 Toll-Like/genética , Receptor 7 Toll-Like/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Animais , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Técnicas In Vitro , Fatores Reguladores de Interferon/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Índice de Gravidade de Doença , Transdução de Sinais , Líquido Sinovial/imunologia , Líquido Sinovial/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 3 Toll-Like/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia
10.
Neurobiol Aging ; 25(10): 1361-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15465634

RESUMO

The physiologic ability of peripheral nerves to regenerate after injury is impaired with aging. However, the mechanisms responsible for this phenomenon are still incompletely characterized. In this study, we investigated whether aging influences the intraneural angiogenic response that occurs after injury and during regeneration of peripheral nerves. We performed a crush injury of the sciatic nerve in old and senescence accelerated mice and found that the peripheral nerves of these animals are unable to locally upregulate vascular endothelial growth factor (VEGF), a prototypical angiogenic cytokine, after injury and have substantial deficits in mounting an appropriate intraneural angiogenic response during nerve regeneration. Our findings provide new evidence of possible interdependent relationships between aging, VEGF, angiogenesis, and nerve regeneration and suggest that vascular abnormalities might play a role in aging-associated neurological dysfunction, with potentially important fundamental and clinical implications.


Assuntos
Envelhecimento/metabolismo , Neovascularização Fisiológica/fisiologia , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Envelhecimento/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Condução Nervosa/fisiologia , Traumatismos dos Nervos Periféricos , Nervos Periféricos/irrigação sanguínea , Nervos Periféricos/patologia , Nervos Periféricos/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/irrigação sanguínea , Nervo Isquiático/patologia
11.
Metabolism ; 62(12): 1730-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23993424

RESUMO

OBJECTIVE: Despite the clinical prevalence of obesity, only recently has the importance of adipose tissue microenvironment been addressed at a molecular level. Here, I focused on the fat-derived cytokine adiponectin as a model system to understand the mechanism underlying adipose tissue vascularity, perfusion, inflammation, and systemic metabolic function. MATERIALS/METHODS: Wild type, adiponectin-deficient, and adiponectin transgenic-overexpressing mice were maintained on chow diet or high fat/high sucrose diet for 32weeks. Vascularization of adipose tissue was examined by confocal microscopy and perfusion was determined by recovery of injected microspheres. Adipose tissue inflammation and systemic metabolic function were also assessed. RESULTS: Modest over-expression of adiponectin led to a marked increase in adipose tissue vascularity and perfusion, and this was associated with diminished hypoxia and an increase in vascular endothelial growth factor-A (VEGF-A) expression in the obese mice. Adiponectin over-expression in diet-induced obese mice also led to the virtual absence of macrophage infiltration and the elimination of crown-like structures. Adiponectin transgenic mice also displayed a remarkable sensitivity to insulin and diminished hepatic steatosis. Under the conditions of these experiments, adiponectin deficiency did not diminish adipose tissue perfusion or worsen metabolic function compared to wild type mice fed the high fat/high sucrose diet. CONCLUSION: These data demonstrate that increased circulating adiponectin levels, and the obese environment, are associated with increased adipose tissue vascularization and perfusion, and improved metabolic function under conditions of long term diet-induced obesity.


Assuntos
Adiponectina/fisiologia , Tecido Adiposo/irrigação sanguínea , Obesidade/fisiopatologia , Adiponectina/biossíntese , Adiponectina/genética , Tecido Adiposo/anatomia & histologia , Tecido Adiposo Branco/irrigação sanguínea , Tecido Adiposo Branco/patologia , Animais , Dieta , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação/fisiologia , Microscopia Confocal , Microesferas , Neovascularização Fisiológica/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Fluxo Sanguíneo Regional/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese
12.
Int J Inflam ; 2011: 376909, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21941676

RESUMO

Inflammation is widely known to play a key role in the development and progression of cardiovascular diseases. It is becoming increasingly evident that obesity is linked to many proinflammatory and obesity-associated cardiovascular conditions (e.g., metabolic syndrome, acute coronary syndrome, and congestive heart failure). It has been observed that adipokines play an increasingly large role in systemic and local inflammation. Therefore, adipose tissue may have a more important role than previously thought in the pathogenesis of several disease types. This review explores the recently described role of adiponectin as an immunomodulatory factor and how it intersects with the inflammation associated with both cardiovascular and autoimmune pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA