Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 171(5): 1094-1109.e15, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149604

RESUMO

Cholesterol is a critical nutrient requiring tight constraint in the endoplasmic reticulum (ER) due to its uniquely challenging biophysical properties. While the mechanisms by which the ER defends against cholesterol insufficiency are well described, it remains unclear how the ER senses and effectively defends against cholesterol excess. Here, we identify the ER-bound transcription factor nuclear factor erythroid 2 related factor-1, Nrf1/Nfe2L1, as a critical mediator of this process. We show that Nrf1 directly binds to and specifically senses cholesterol in the ER through a defined domain and that cholesterol regulates Nrf1 turnover, processing, localization, and activity. In Nrf1 deficiency, in vivo cholesterol challenges induce massive hepatic cholesterol accumulation and damage, which is rescued by replacing Nrf1 exogenously. This Nrf1-mediated mechanism involves the suppression of CD36-driven inflammatory signaling and derepression of liver X receptor activity. These findings reveal Nrf1 as a guardian of cholesterol homeostasis and a core component of adaptive responses to excess cellular cholesterol.


Assuntos
Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Fígado/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Animais , Antígenos CD36/metabolismo , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Fígado/citologia , Camundongos , Transcrição Gênica
2.
Nature ; 627(8003): 347-357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374256

RESUMO

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Assuntos
Diabetes Mellitus Tipo 2 , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Adipócitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/genética , Células Endoteliais/metabolismo , Células Enteroendócrinas , Epigenômica , Predisposição Genética para Doença/genética , Ilhotas Pancreáticas/metabolismo , Herança Multifatorial/genética , Doença Arterial Periférica/complicações , Doença Arterial Periférica/genética , Análise de Célula Única
3.
EMBO J ; 43(2): 168-195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212382

RESUMO

Coenzyme Q (CoQ) is essential for mitochondrial respiration and required for thermogenic activity in brown adipose tissues (BAT). CoQ deficiency leads to a wide range of pathological manifestations, but mechanistic consequences of CoQ deficiency in specific tissues, such as BAT, remain poorly understood. Here, we show that pharmacological or genetic CoQ deficiency in BAT leads to stress signals causing accumulation of cytosolic mitochondrial RNAs and activation of the eIF2α kinase PKR, resulting in activation of the integrated stress response (ISR) with suppression of UCP1 but induction of FGF21 expression. Strikingly, despite diminished UCP1 levels, BAT CoQ deficiency displays increased whole-body metabolic rates at room temperature and thermoneutrality resulting in decreased weight gain on high-fat diets (HFD). In line with enhanced metabolic rates, BAT and inguinal white adipose tissue (iWAT) interorgan crosstalk caused increased browning of iWAT in BAT-specific CoQ deficient animals. This mitohormesis-like effect depends on the ATF4-FGF21 axis and BAT-secreted FGF21, revealing an unexpected role for CoQ in the modulation of whole-body energy expenditure with wide-ranging implications for primary and secondary CoQ deficiencies.


Assuntos
Tecido Adiposo Marrom , Ataxia , Fatores de Crescimento de Fibroblastos , Doenças Mitocondriais , Debilidade Muscular , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Ubiquinona/metabolismo , Ubiquinona/farmacologia , Doenças Mitocondriais/metabolismo , Termogênese/genética , Camundongos Endogâmicos C57BL
4.
Nature ; 603(7902): 736-742, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264794

RESUMO

Cells display complex intracellular organization by compartmentalization of metabolic processes into organelles, yet the resolution of these structures in the native tissue context and their functional consequences are not well understood. Here we resolved the three-dimensional structural organization of organelles in large (more than 2.8 × 105 µm3) volumes of intact liver tissue (15 partial or full hepatocytes per condition) at high resolution (8 nm isotropic pixel size) using enhanced focused ion beam scanning electron microscopy1,2 imaging followed by deep-learning-based automated image segmentation and 3D reconstruction. We also performed a comparative analysis of subcellular structures in liver tissue of lean and obese mice and found substantial alterations, particularly in hepatic endoplasmic reticulum (ER), which undergoes massive structural reorganization characterized by marked disorganization of stacks of ER sheets3 and predominance of ER tubules. Finally, we demonstrated the functional importance of these structural changes by monitoring the effects of experimental recovery of the subcellular organization on cellular and systemic metabolism. We conclude that the hepatic subcellular organization of the ER architecture are highly dynamic, integrated with the metabolic state and critical for adaptive homeostasis and tissue health.


Assuntos
Retículo Endoplasmático , Homeostase , Fígado , Animais , Retículo Endoplasmático/metabolismo , Fígado/citologia , Camundongos , Microscopia/métodos , Organelas
5.
Annu Rev Genomics Hum Genet ; 25(1): 239-257, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39190913

RESUMO

Osteoarthritis is the most prevalent whole-joint degenerative disorder, and is characterized by the degradation of articular cartilage and the underlying bone structures. Almost 600 million people are affected by osteoarthritis worldwide. No curative treatments are available, and management strategies focus mostly on pain relief. Here, we provide a comprehensive overview of the available human genetic and functional genomics studies for osteoarthritis to date and delineate how these studies have helped shed light on disease etiopathology. We highlight genetic discoveries from genome-wide association studies and provide a detailed overview of molecular-level investigations in osteoarthritis tissues, including methylation-, transcriptomics-, and proteomics-level analyses. We review how functional genomics data from different molecular levels have helped to prioritize effector genes that can be used as drug targets or drug-repurposing opportunities. Finally, we discuss future directions with the potential to drive a step change in osteoarthritis research.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Osteoartrite , Humanos , Osteoartrite/genética , Proteômica , Predisposição Genética para Doença , Metilação de DNA
6.
Am J Hum Genet ; 110(8): 1304-1318, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37433298

RESUMO

Multimorbidity is a rising public health challenge with important implications for health management and policy. The most common multimorbidity pattern is the combination of cardiometabolic and osteoarticular diseases. Here, we study the genetic underpinning of the comorbidity between type 2 diabetes and osteoarthritis. We find genome-wide genetic correlation between the two diseases and robust evidence for association-signal colocalization at 18 genomic regions. We integrate multi-omics and functional information to resolve the colocalizing signals and identify high-confidence effector genes, including FTO and IRX3, which provide proof-of-concept insights into the epidemiologic link between obesity and both diseases. We find enrichment for lipid metabolism and skeletal formation pathways for signals underpinning the knee and hip osteoarthritis comorbidities with type 2 diabetes, respectively. Causal inference analysis identifies complex effects of tissue-specific gene expression on comorbidity outcomes. Our findings provide insights into the biological basis for the type 2 diabetes-osteoarthritis disease co-occurrence.


Assuntos
Diabetes Mellitus Tipo 2 , Osteoartrite , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Comorbidade , Osteoartrite/epidemiologia , Osteoartrite/genética , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/genética , Causalidade , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
7.
Microsc Microanal ; 25(1): 214-220, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30702056

RESUMO

Five scarabs and one scaraboid found in Vinha das Caliças 4 (Beja, Portugal) were analyzed using a micro-analytical methodology in order to determine their mineralogical and chemical composition. Microstructural characterization and chemical analysis revealed that all were composed of a white body of crushed feldspathic sand covered by a lead-rich, alkaline-depleted silicate blue-green glaze showing evident signs of glass deterioration. Variable pressure scanning electron microscopy with X-ray energy dispersive spectrometry, handheld X-ray fluorescence spectroscopy, and micro X-ray diffraction results show that blue-green color of the glaze was produced by using copper ions (Cu2+) in conjunction with the lead antimonate bindheimite, a yellow-colored opacifier. The introduction of small amounts of tin in the structure of bindheimite enabled the production of a ternary Pb-Sb-Sn oxide. Tin, which was most likely added with the copper source (bronze scrapings), is known to facilitate the crystallization of bindheimite. The results are consistent with the five scarabs and one scaraboid being manufactured in Egypt. This study, the first archeometric study of scarabs found in the Iberian peninsula, has greatly contributed to the understanding of the influence of the Eastern and Central Mediterranean world in the Southwestern Iberia during the first millennium B.C.

8.
Exp Parasitol ; 143: 60-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24846006

RESUMO

Leishmaniasis is a major public health problem, and the alarming spread of parasite resistance has increased the importance of discovering new therapeutic products. The present study aimed to investigate the in vitro leishmanicidal activity from 16 different Brazilian medicinal plants. Stationary-phase promastigotes of Leishmania amazonensis and murine macrophages were exposed to 44 plant extracts or fractions for 48 h at 37°C, in order to evaluate their antileishmanial activity and cytotoxicity, respectively. The most potent extracts against L. amazonensis were the hexanic extract of Dipteryx alata (IC50 of 0.08 µg/mL), the hexanic extract of Syzygium cumini (IC50 of 31.64 µg/mL), the ethanolic and hexanic extracts of leaves of Hymenaea courbaril (IC50 of 44.10 µg/mL and 35.84 µg/mL, respectively), the ethanolic extract of H. stignocarpa (IC50 of 4.69 µg/mL), the ethanolic extract of Jacaranda caroba (IC50 of 13.22 µg/mL), and the ethanolic extract of J. cuspidifolia leaves (IC50 of 10.96 µg/mL). Extracts of D. alata and J. cuspidifolia presented higher selectivity index, with high leishmanicidal activity and low cytotoxicity in the mammalian cells. The capacity in treated infected macrophages using the extracts and/or fractions of D. alata and J. cuspidifolia was also analyzed, and reductions of 95.80%, 98.31%, and 97.16%, respectively, in the parasite burden, were observed. No nitric oxide (NO) production could be observed in the treated macrophages, after stimulation with the extracts and/or fractions of D. alata and J. cuspidifolia, suggesting that the biological activity could be due to mechanisms other than macrophage activation mediated by NO production. Based on phytochemistry studies, the classes of compounds that could contribute to the observed activities are also discussed. In conclusion, the data presented in this study indicated that traditional medicinal plant extracts present effective antileishmanial activity. Future studies could focus on the identification and purification of the antileishmanial compounds within these plants for analysis of their in vivo antileishmanial activity.


Assuntos
Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Antiprotozoários/toxicidade , Brasil , Feminino , Flavonoides/análise , Flavonoides/isolamento & purificação , Concentração Inibidora 50 , Leishmaniose Cutânea/tratamento farmacológico , Camundongos , Óxido Nítrico/metabolismo , Fenóis/análise , Fenóis/isolamento & purificação , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/toxicidade
9.
Cell Genom ; 4(2): 100485, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38272034

RESUMO

There is a pressing need to generate molecular data from diverse tissues across global populations. These currently missing data are necessary to resolve genome-wide association study loci, identify effector genes, and move the translational genomics needle beyond European-ancestry individuals and the minority of diseases for which blood is the relevant tissue.


Assuntos
Estudo de Associação Genômica Ampla , Grupos Minoritários , Humanos , Genômica
10.
An Bras Dermatol ; 99(1): 80-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37598033

RESUMO

BACKGROUND: Psoriasis is associated with several comorbidities and its association with thyroid abnormality has been hypothesized. OBJECTIVE: To assess the prevalence of thyroid abnormality in Brazilian patients with psoriasis and to analyze its association with severity, presence of psoriatic arthritis and immunobiological treatment. Additionally, to compare results with literature as a control. METHODS: In this observational study, clinical and laboratory data of patients followed from January 2018 to December 2019 were analyzed. Thyroid abnormality was assessed through the current history of thyroid disease and laboratory tests - thyrotropin (TSH), free thyroxine (FT4), antithyroid peroxidase (anti-TPO) and antithyroglobulin (anti-TG) antibodies. Patients were classified according to psoriasis severity - Psoriasis Area and Severity Index (PASI), presence of psoriatic arthritis, and current treatment. Subsequently, the results were compared with a control group selected from the literature review. RESULTS: Of the 250 included patients, 161 were eligible. The prevalence of thyroid abnormality was 28.57% and of hypothyroidism, 14.91%. The mean age was 55 years and the median PASI was 2.2. There was no association between thyroid abnormality and PASI (p=0.8), presence of psoriatic arthritis (p=0.87), or use of immunobiological therapy (p=0.13). The literature control group included 6,227 patients and there was a statistically significant difference for the hypothyroidism variable (p<0.0001). STUDY LIMITATIONS: Absence of a control group from the same center. CONCLUSION: This was one of the first Brazilian studies on the prevalence of thyroid abnormality in patients with psoriasis.


Assuntos
Artrite Psoriásica , Hipotireoidismo , Psoríase , Doenças da Glândula Tireoide , Humanos , Pessoa de Meia-Idade , Artrite Psoriásica/complicações , Artrite Psoriásica/epidemiologia , Prevalência , Doenças da Glândula Tireoide/epidemiologia , Hipotireoidismo/epidemiologia , Psoríase/complicações , Psoríase/epidemiologia , Tiroxina
11.
Schizophrenia (Heidelb) ; 10(1): 22, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383672

RESUMO

Multimorbidity represents an increasingly important public health challenge with far-reaching implications for health management and policy. Mental health and metabolic diseases have a well-established epidemiological association. In this study, we investigate the genetic intersection between type 2 diabetes and schizophrenia. We use Mendelian randomization to examine potential causal relationships between the two conditions and related endophenotypes. We report no compelling evidence that type 2 diabetes genetic liability potentially causally influences schizophrenia risk and vice versa. Our findings show that increased body mass index (BMI) has a protective effect against schizophrenia, in contrast to the well-known risk-increasing effect of BMI on type 2 diabetes risk. We identify evidence of colocalization of association signals for these two conditions at 11 genomic loci, six of which have opposing directions of effect for type 2 diabetes and schizophrenia. To elucidate these colocalizing signals, we integrate multi-omics data from bulk and single-cell gene expression studies, along with functional information. We identify putative effector genes and find that they are enriched for homeostasis and lipid-related pathways. We also highlight drug repurposing opportunities including N-methyl-D-aspartate (NMDA) receptor antagonists. Our findings provide insights into shared biological mechanisms for type 2 diabetes and schizophrenia, highlighting common factors that influence the risk of the two conditions in opposite directions and shedding light on the complex nature of this comorbidity.

12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159512, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761895

RESUMO

OBJECTIVE: Excess cholesterol storage can induce the formation of cholesterol crystals in hepatocyte lipid droplets. Such crystals distinguish metabolic dysfunction associated steatohepatitis (MASH) from simple steatosis and may underlie its pathogenesis by causing cell damage that triggers liver inflammation. The mechanism linking cholesterol excess to its crystallization in lipid droplets is unclear. As cholesteryl esters localize to and accumulate in lipid droplets more readily than unesterified free cholesterol, we investigated whether cholesterol esterification by sterol O-acyltransferase (SOAT), also known as acyl co-A cholesterol acyltransferase (ACAT), is required for hepatocyte lipid droplet crystal formation. METHOD: Cholesterol crystals were measured in cholesterol loaded Hep3B hepatocytes, RAW264.7 macrophages, and mouse liver using polarizing light microscopy. We examined the effect of blocking SOAT activity on crystal formation and compared these results to features of cholesterol metabolism and the progression to intracellular crystal deposits. RESULTS: Cholesterol loading of Hep3B cells caused robust levels of lipid droplet localized crystal formation in a dose- and time-dependent manner. Co-treatment with SOAT inhibitors and genetic ablation of SOAT1 blocked crystal formation. SOAT inhibitor also blocked crystal formation in low density lipoprotein (LDL) treated Hep3B cells, acetylated LDL treated RAW 264.7 macrophages, and in the liver of mice genetically predisposed to hepatic cholesterol overload and in mice with cholesterol enriched diet-induced MASH. CONCLUSION: SOAT1-mediated esterification may underlie cholesterol crystals associated with MASH by concentrating it in lipid droplets. These findings imply that inhibiting hepatocyte SOAT1 may be able to alleviate cholesterol associated MASH. Moreover, that either a lipid droplet localized cholesteryl ester hydrolase is required for cholesterol crystal formation, or the crystals are composed of cholesteryl ester.


Assuntos
Colesterol , Hepatócitos , Gotículas Lipídicas , Esterol O-Aciltransferase , Animais , Humanos , Masculino , Camundongos , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Cristalização , Esterificação , Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase/genética
13.
Nat Commun ; 15(1): 3982, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729945

RESUMO

The hepatocytes within the liver present an immense capacity to adapt to changes in nutrient availability. Here, by using high resolution volume electron microscopy, we map how hepatic subcellular spatial organization is regulated during nutritional fluctuations and as a function of liver zonation. We identify that fasting leads to remodeling of endoplasmic reticulum (ER) architecture in hepatocytes, characterized by the induction of single rough ER sheet around the mitochondria, which becomes larger and flatter. These alterations are enriched in periportal and mid-lobular hepatocytes but not in pericentral hepatocytes. Gain- and loss-of-function in vivo models demonstrate that the Ribosome receptor binding protein1 (RRBP1) is required to enable fasting-induced ER sheet-mitochondria interactions and to regulate hepatic fatty acid oxidation. Endogenous RRBP1 is enriched around periportal and mid-lobular regions of the liver. In obesity, ER-mitochondria interactions are distinct and fasting fails to induce rough ER sheet-mitochondrion interactions. These findings illustrate the importance of a regulated molecular architecture for hepatocyte metabolic flexibility.


Assuntos
Retículo Endoplasmático , Jejum , Hepatócitos , Fígado , Obesidade , Jejum/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Hepatócitos/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Fígado/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Ácidos Graxos/metabolismo , Humanos , Oxirredução , Proteínas Ribossômicas/metabolismo
14.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895340

RESUMO

Imbalances in lipid storage and secretion lead to the accumulation of hepatocyte lipid droplets (LDs) (i.e., hepatic steatosis). Our understanding of the mechanisms that govern the channeling of hepatocyte neutral lipids towards cytosolic LDs or secreted lipoproteins remains incomplete. Here, we performed a series of CRISPR-Cas9 screens under different metabolic states to uncover mechanisms of hepatic neutral lipid flux. Clustering of chemical-genetic interactions identified CLIC-like chloride channel 1 (CLCC1) as a critical regulator of neutral lipid storage and secretion. Loss of CLCC1 resulted in the buildup of large LDs in hepatoma cells and knockout in mice caused liver steatosis. Remarkably, the LDs are in the lumen of the ER and exhibit properties of lipoproteins, indicating a profound shift in neutral lipid flux. Finally, remote homology searches identified a domain in CLCC1 that is homologous to yeast Brl1p and Brr6p, factors that promote the fusion of the inner and outer nuclear envelopes during nuclear pore complex assembly. Loss of CLCC1 lead to extensive nuclear membrane herniations, consistent with impaired nuclear pore complex assembly. Thus, we identify CLCC1 as the human Brl1p/Brr6p homolog and propose that CLCC1-mediated membrane remodeling promotes hepatic neutral lipid flux and nuclear pore complex assembly.

15.
medRxiv ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39072045

RESUMO

Discerning the mechanisms driving type 2 diabetes (T2D) pathophysiology from genome-wide association studies (GWAS) remains a challenge. To this end, we integrated omics information from 16 multi-tissue and multi-ancestry expression, protein, and metabolite quantitative trait loci (QTL) studies and 46 multi-ancestry GWAS for T2D-related traits with the largest, most ancestrally diverse T2D GWAS to date. Of the 1,289 T2D GWAS index variants, 716 (56%) demonstrated strong evidence of colocalization with a molecular or T2D-related trait, implicating 657 cis-effector genes, 1,691 distal-effector genes, 731 metabolites, and 43 T2D-related traits. We identified 773 of these cis- and distal-effector genes using either expression QTL data from understudied ancestry groups or inclusion of T2D index variants enriched in underrepresented populations, emphasizing the value of increasing population diversity in functional mapping. Linking these variants, genes, metabolites, and traits into a network, we elucidated mechanisms through which T2D-associated variation may impact disease risk. Finally, we showed that drugs targeting effector proteins were enriched in those approved to treat T2D, highlighting the potential of these results to prioritize drug targets for T2D. These results represent a leap in the molecular characterization of T2D-associated genetic variation and will aid in translating genetic findings into novel therapeutic strategies.

16.
J Biol Chem ; 287(19): 15580-9, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22427667

RESUMO

Inflammation plays an important pathogenic role in a number of metabolic diseases such as obesity, type 2 diabetes, and atherosclerosis. The activation of inflammation in these diseases depends at least in part on the combined actions of TLR4 signaling and endoplasmic reticulum stress, which by acting in concert can boost the inflammatory response. Defining the mechanisms involved in this phenomenon may unveil potential targets for the treatment of metabolic/inflammatory diseases. Here we used LPS to induce endoplasmic reticulum stress in the human monocyte cell-line, THP-1. The unfolded protein response, produced after LPS, was dependent on CD14 activity but not on RNA-dependent protein kinase and could be inhibited by an exogenous chemical chaperone. The induction of the endoplasmic reticulum resident chaperones, GRP94 and GRP78, by LPS was of a much lower magnitude than the effect of LPS on TLR4 and MD-2 expression. In face of this apparent insufficiency of chaperone expression, we induced the expression of GRP94 and GRP78 by glucose deprivation. This approach completely reverted endoplasmic reticulum stress. The inhibition of either GRP94 or GRP78 with siRNA was sufficient to rescue the protective effect of glucose deprivation on LPS-induced endoplasmic reticulum stress. Thus, insufficient LPS-induced chaperone expression links TLR4 signaling to endoplasmic reticulum stress.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Chaperonas Moleculares/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucose/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Immunoblotting , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-35940911

RESUMO

The endoplasmic reticulum (ER) is a key organelle involved in the regulation of lipid and glucose metabolism, proteostasis, Ca2+ signaling, and detoxification. The structural organization of the ER is very dynamic and complex, with distinct subdomains such as the nuclear envelope and the peripheral ER organized into ER sheets and tubules. ER also forms physical contact sites with all other cellular organelles and with the plasma membrane. Both form and function of the ER are highly adaptive, with a potent capacity to respond to transient changes in environmental cues such as nutritional fluctuations. However, under obesity-induced chronic stress, the ER fails to adapt, leading to ER dysfunction and the development of metabolic pathologies such as insulin resistance and fatty liver disease. Here, we discuss how the remodeling of ER structure and contact sites with other organelles results in diversification of metabolic function and how perturbations to this structural flexibility by chronic overnutrition contribute to ER dysfunction and metabolic pathologies in obesity.


Assuntos
Retículo Endoplasmático , Transdução de Sinais , Humanos , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo , Membrana Nuclear/metabolismo , Obesidade , Estresse do Retículo Endoplasmático/fisiologia
18.
Noise Health ; 25(119): 247-256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38358240

RESUMO

Objective: The exposure to some environmental sounds has detrimental effects on health and might affect the performance in cognitive tasks. In this study, we analyze the effect of the neighborhood noises of a baby crying and dogs barking on the autonomic response and cognitive function. Materials and methods: Twenty participants were exposed, in separate sessions, to white noise, a baby crying, a small dog barking, and a large dog barking. During each session, heart rate, skin conductance, reaction times, spatial memory, and mathematical processing measures were taken throughout time. Results: The sounds of a baby crying and dogs barking led to significantly higher heart rates and skin conductance levels as opposed to exposure to white noise. Results were not as consistent with exposure to barking as they were to the baby. Exposure to the baby crying and dogs barking led to faster reaction times, possibly due to a facilitation by the autonomic system activation. No significant effects on spatial memory were found. Conversely, participants performed worse and slower in a mathematical task when exposed to the dog and baby sounds, than when exposed to control noise. Conclusion: Exposure to the sound of crying babies and dogs barking leads to increased sympathetic response and decreased cognitive ability, as compared to exposure to control sounds. Special attention should be paid to the mitigation of exposure to these types of noises.


Assuntos
Choro , Ruído , Lactente , Humanos , Cães , Animais , Ruído/efeitos adversos , Cognição
19.
medRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905000

RESUMO

Multimorbidity represents an increasingly important public health challenge with far-reaching implications for health management and policy. Mental health and metabolic diseases have a well-established epidemiological association. In this study, we investigate the genetic intersection between type 2 diabetes and schizophrenia. We use Mendelian randomization to examine potential causal relationships between the two conditions and related endophenotypes. We report no compelling evidence that type 2 diabetes genetic liability potentially causally influences schizophrenia risk and vice versa. Our findings show that increased body mass index (BMI) has a protective effect against schizophrenia, in contrast to the well-known risk-increasing effect of BMI on type 2 diabetes risk. We identify evidence of colocalization of association signals for these two conditions at 11 genomic loci, six of which have opposing directions of effect for type 2 diabetes and schizophrenia. To elucidate these colocalizing signals, we integrate multi-omics data from bulk and single-cell gene expression studies, along with functional information. We identify high-confidence effector genes and find that they are enriched for homeostasis and lipid-related pathways. We also highlight drug repurposing opportunities including N-methyl-D-aspartate (NMDA) receptor antagonists. Our findings provide insights into shared biological mechanisms for type 2 diabetes and schizophrenia, highlighting common factors that influence the risk of the two conditions in opposite directions and shedding light on the complex nature of this comorbidity.

20.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36346671

RESUMO

Three principal ER quality-control mechanisms, namely, the unfolded protein response, ER-associated degradation (ERAD), and ER-phagy are each important for the maintenance of ER homeostasis, yet how they are integrated to regulate ER homeostasis and organellar architecture in vivo is largely unclear. Here we report intricate crosstalk among the 3 pathways, centered around the SEL1L-HRD1 protein complex of ERAD, in the regulation of organellar organization in ß cells. SEL1L-HRD1 ERAD deficiency in ß cells triggers activation of autophagy, at least in part, via IRE1α (an endogenous ERAD substrate). In the absence of functional SEL1L-HRD1 ERAD, proinsulin is retained in the ER as high molecular weight conformers, which are subsequently cleared via ER-phagy. A combined loss of both SEL1L and autophagy in ß cells leads to diabetes in mice shortly after weaning, with premature death by approximately 11 weeks of age, associated with marked ER retention of proinsulin and ß cell loss. Using focused ion beam scanning electron microscopy powered by deep-learning automated image segmentation and 3D reconstruction, our data demonstrate a profound organellar restructuring with a massive expansion of ER volume and network in ß cells lacking both SEL1L and autophagy. These data reveal at an unprecedented detail the intimate crosstalk among the 3 ER quality-control mechanisms in the dynamic regulation of organellar architecture and ß cell function.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Endorribonucleases , Camundongos , Animais , Endorribonucleases/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA