Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 94(16): 6206-6215, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35427127

RESUMO

The presence of antibiotics and their metabolites in milk and dairy products is a serious concern because of their harmful effects on human health. In the current study, a novel synergistic bimetallic nanocluster with gold and silver as an emission fluorescence probe was investigated for the simultaneous determination of tetracycline (TC), ampicillin (AMP), and sulfacetamide (SAC) antibiotics in the milk samples using excitation-emission matrix fluorescence (EEMF) spectroscopy. The multivariate curve resolution-alternating least squares (MCR-ALS) method was implemented to analyze augmented EEMF data sets to quantify the multicomponent systems in the presence of interferences with considerable spectral overlap. A pseudo-univariate calibration curve of the resolved emission spectra intensity against the concentration of the mentioned antibiotics was linear in the range of 5-5000 ng mL-1 for AMP and 50-5000 ng mL-1 for TC and SAC. The calculated values of the limit of detection ranged between 1.4 and 14.6 ng mL-1 with a relative standard deviation (RSD) of less than 4.9%. The obtained results show that the EEMF/MCR-ALS methodology using an emission fluorescence probe is a powerful tool for the simultaneous quantification of TC, AMP, and SAC in complex matrices with highly overlapped spectra.


Assuntos
Antibacterianos , Leite , Animais , Humanos , Ampicilina/análise , Ampicilina/química , Corantes Fluorescentes , Análise dos Mínimos Quadrados , Análise Multivariada , Tetraciclina/análise , Tetraciclina/química
2.
Trends Analyt Chem ; 157: 116727, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35815064

RESUMO

Researchers are constantly looking to find new techniques of virus detection that are sensitive, cost-effective, and accurate. Additionally, they can be used as a point-of-care (POC) tool due to the fact that the populace is growing at a quick tempo, and epidemics are materializing greater often than ever. Electrochemiluminescence-based (ECL) biosensors for the detection of viruses have become one of the most quickly developing sensors in this field. Thus, we here focus on recent trends and developments of these sensors with regard to virus detection. Also, quantitative analysis of various viruses (e.g., Influenza virus, SARS-CoV-2, HIV, HPV, Hepatitis virus, and Zika virus) with a specific interest in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was introduced from the perspective of the biomarker and the biological receptor immobilized on the ECL-based sensors, such as nucleic acids-based, immunosensors, and other affinity ECL biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA