Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 29(1): 92, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415117

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinical reports indicate that smoking is a significant risk factor for chronic kidney disease, and the tobacco epidemic exacerbates kidney damage in patients with DN. However, the underlying molecular mechanisms remain unclear. METHOD: In the present study, we used a diabetic mouse model to investigate the molecular mechanisms for nicotine-exacerbated DN. Twelve-week-old female mice were injected with streptozotocin (STZ) to establish a hyperglycemic diabetic model. After four months, the control and hyperglycemic diabetic mice were further divided into four groups (control, nicotine, diabetic mellitus, nicotine + diabetic mellitus) by intraperitoneal injection of nicotine or PBS. After two months, urine and blood were collected for kidney injury assay, and renal tissues were harvested for further molecular assays using RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry. In vitro studies, we used siRNA to suppress Grem1 expression in human podocytes. Then we treated them with nicotine and high glucose to compare podocyte injury. RESULT: Nicotine administration alone did not cause apparent kidney injury, but it significantly increased hyperglycemia-induced albuminuria, BUN, plasma creatinine, and the kidney tissue mRNA expression of KIM-1 and NGAL. Results from RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry analysis revealed that, compared to hyperglycemia or nicotine alone, the combination of nicotine treatment and hyperglycemia significantly increased the expression of Grem1 and worsened DN. In vitro experiments, suppression of Grem1 expression attenuated nicotine-exacerbated podocyte injury. CONCLUSION: Grem1 plays a vital role in nicotine-exacerbated DN. Grem1 may be a potential therapeutic target for chronic smokers with DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Hiperglicemia , Humanos , Camundongos , Feminino , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/induzido quimicamente , Regulação para Cima , Nicotina/efeitos adversos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/induzido quimicamente , Hiperglicemia/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
2.
Platelets ; 31(3): 399-402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31146647

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder in which autoantibodies and/or autoreactive T cells destroy platelets and megakaryocytes in the spleen and bone marrow, respectively. Thrombopoietin receptor agonists (TPO-RA e.g. Romiplostim and Eltrombopag) have made a substantial contribution to the treatment of patients with ITP, which are refractory to first-line treatments and approximately 30% demonstrate sustained elevated platelet counts after drug tapering. How TPO-RA induce these sustained responses is not known. We analyzed the efficacy of a murine TPO-RA in a well-established murine model of active ITP. Treatment with TPO-RA (10 ug/kg, based on pilot dose escalation experiments) significantly raised the platelet counts in ITP-mice. Immunomodulation was assessed by measuring serum IgG anti-platelet antibody levels; TPO-RA-treated mice had significantly reduced IgG anti-platelet antibodies despite the increasing platelet counts. These results suggest that TPO-RA is not only an efficacious therapy but also reduces anti-platelet humoral immunity in ITP.


Assuntos
Autoanticorpos/imunologia , Plaquetas/imunologia , Plaquetas/metabolismo , Contagem de Plaquetas , Púrpura Trombocitopênica Idiopática/etiologia , Púrpura Trombocitopênica Idiopática/metabolismo , Receptores de Trombopoetina/agonistas , Animais , Autoimunidade , Biópsia , Plaquetas/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Imunomodulação , Camundongos , Camundongos Knockout , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/patologia
3.
Am J Pathol ; 188(11): 2508-2528, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30201495

RESUMO

Human parietal epithelial cells (PECs) are progenitor cells that sustain podocyte homeostasis. We hypothesized that the lack of apolipoprotein (APO) L1 ensures the PEC phenotype, but its induction initiates PEC transition (expression of podocyte markers). APOL1 expression and down-regulation of miR193a coincided with the expression of podocyte markers during the transition. The induction of APOL1 also stimulated transition markers in human embryonic kidney cells (cells with undetectable APOL1 protein expression). APOL1 silencing in PECs up-regulated miR193a expression, suggesting the possibility of a reciprocal feedback relationship between APOL1 and miR193a. HIV, interferon-γ, and vitamin D receptor agonist down-regulated miR193a expression and induced APOL1 expression along with transition markers in PECs. Luciferase assay suggested a putative interaction between miR193a and APOL1. Since silencing of APOL1 attenuated HIV-, vitamin D receptor agonist-, miR193a inhibitor-, and interferon-γ-induced expression of transition markers, APOL1 appears to be a critical functional constituent of the miR193a- APOL1 axis in PECs. This notion was confirmed by further enhanced expression of PEC markers in APOL1 mRNA-silenced PECs. In vivo studies, glomeruli in patients with HIV, and HIV/APOL1 transgenic mice had foci of PECs expressing synaptopodin, a transition marker. APOL1 likely regulates PEC molecular phenotype through modulation of miR193a expression, and APOL1 and miR193a share a reciprocal feedback relationship.


Assuntos
Nefropatia Associada a AIDS/patologia , Apolipoproteína L1/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Glomérulos Renais/patologia , MicroRNAs/genética , Nefropatia Associada a AIDS/metabolismo , Nefropatia Associada a AIDS/virologia , Animais , Apolipoproteína L1/genética , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Glomérulos Renais/metabolismo , Camundongos , Camundongos Transgênicos
4.
Blood ; 129(18): 2557-2569, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28202460

RESUMO

Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related fatalities and is characterized by acute respiratory distress following blood transfusion. Donor antibodies are frequently involved; however, the pathogenesis and protective mechanisms in the recipient are poorly understood, and specific therapies are lacking. Using newly developed murine TRALI models based on injection of anti-major histocompatibility complex class I antibodies, we found CD4+CD25+FoxP3+ T regulatory cells (Tregs) and CD11c+ dendritic cells (DCs) to be critical effectors that protect against TRALI. Treg or DC depletion in vivo resulted in aggravated antibody-mediated acute lung injury within 90 minutes with 60% mortality upon DC depletion. In addition, resistance to antibody-mediated TRALI was associated with increased interleukin-10 (IL-10) levels, and IL-10 levels were found to be decreased in mice suffering from TRALI. Importantly, IL-10 injection completely prevented and rescued the development of TRALI in mice and may prove to be a promising new therapeutic approach for alleviating lung injury in this serious complication of transfusion.


Assuntos
Lesão Pulmonar Aguda , Células Dendríticas/imunologia , Interleucina-10 , Linfócitos T Reguladores/imunologia , Reação Transfusional , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Anticorpos/imunologia , Células Dendríticas/patologia , Interleucina-10/imunologia , Interleucina-10/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Linfócitos T Reguladores/patologia
5.
Am J Physiol Renal Physiol ; 314(5): F832-F843, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357419

RESUMO

The loss of podocyte (PD) molecular phenotype is an important feature of diabetic podocytopathy. We hypothesized that high glucose (HG) induces dedifferentiation in differentiated podocytes (DPDs) through alterations in the apolipoprotein (APO) L1-microRNA (miR) 193a axis. HG-induced DPD dedifferentiation manifested in the form of downregulation of Wilms' tumor 1 (WT1) and upregulation of paired box 2 (PAX2) expression. WT1-silenced DPDs displayed enhanced expression of PAX2. Immunoprecipitation of DPD cellular lysates with anti-WT1 antibody revealed formation of WT1 repressor complexes containing Polycomb group proteins, enhancer of zeste homolog 2, menin, and DNA methyltransferase (DNMT1), whereas silencing of either WT1 or DNMT1 disrupted this complex with enhanced expression of PAX2. HG-induced DPD dedifferentiation was associated with a higher expression of miR193a, whereas inhibition of miR193a prevented DPD dedifferentiation in HG milieu. HG downregulated DPD expression of APOL1. miR193a-overexpressing DPDs displayed downregulation of APOL1 and enhanced expression of dedifferentiating markers; conversely, silencing of miR193a enhanced the expression of APOL1 and preserved DPD phenotype. Moreover, stably APOL1G0-overexpressing DPDs displayed the enhanced expression of WT1 but attenuated expression of miR193a; nonetheless, silencing of APOL1 reversed these effects. Since silencing of APOL1 enhanced miR193a expression as well as dedifferentiation in DPDs, it appears that downregulation of APOL1 contributed to dedifferentiation of DPDs through enhanced miR193a expression in HG milieu. Vitamin D receptor agonist downregulated miR193a, upregulated APOL1 expression, and prevented dedifferentiation of DPDs in HG milieu. These findings suggest that modulation of the APOL1-miR193a axis carries a potential to preserve DPD molecular phenotype in HG milieu.


Assuntos
Apolipoproteína L1/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Glucose/toxicidade , MicroRNAs/metabolismo , Podócitos/efeitos dos fármacos , Apolipoproteína L1/genética , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Linhagem Celular Transformada , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Fenótipo , Podócitos/metabolismo , Podócitos/patologia , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas WT1/genética , Proteínas WT1/metabolismo
6.
Platelets ; 28(5): 521-524, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27885866

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by low platelet counts. First-line treatment includes intravenous immunoglobulin (IVIg), however, its working mechanism remains incompletely understood. We investigated splenic and thymic dendritic cell (DC) subsets upon IVIg treatment in a well-characterized active murine model of ITP. During active disease, there was a significant peripheral deficiency of splenic tolerizing SIRPα+ DCs which could be rescued by IVIg therapy, increasing platelet counts. These splenic tolerizing DC changes were associated with an abrogation of the thymic-retention of tolerizing DCs, suggesting that IVIg may raise platelet counts in ITP by modulating peripheral numbers of tolerizing DCs.


Assuntos
Células Dendríticas/imunologia , Tolerância Imunológica/efeitos dos fármacos , Imunoglobulinas Intravenosas/farmacologia , Púrpura Trombocitopênica Idiopática , Baço/imunologia , Timo/imunologia , Regulação para Cima/efeitos dos fármacos , Animais , Células Dendríticas/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Camundongos SCID , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/patologia , Baço/patologia , Timo/patologia , Regulação para Cima/imunologia
7.
Blood ; 123(3): 422-7, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24258817

RESUMO

Platelet transfusions are life-saving treatments for many patients with thrombocytopenia; however, their use is generally discouraged in the autoimmune disorder known as immune thrombocytopenia (ITP). We examined whether allogeneic platelet major histocompatibility complex (MHC) class I transfusions affected antiplatelet CD61-induced ITP. BALB/c CD61 knockout mice (CD61(-)/H-2(d)) were immunized against platelets from wild-type syngeneic BALB/c (CD61(+)/H-2(d)), allogeneic C57BL/6 (CD61(+)/H-2(b)), or C57BL/6 CD61 KO (CD61(-)/H-2(b)) mice, and their splenocytes were transferred into severe combined immunodeficient (SCID) mice to induce ITP. When nondepleted splenocytes were transferred to induce antibody-mediated ITP, both CD61(+) platelet immunizations generated immunity that caused thrombocytopenia independently of allogeneic MHC molecules. In contrast, when B-cell-depleted splenocytes were transferred to induce T-cell-mediated ITP, transfer of allogeneic MHC-immunized splenocytes completely prevented CD61-induced ITP development. In addition, allogeneic platelet transfusions into SCID mice with established CD61-induced ITP rescued the thrombocytopenia. Compared with thrombocytopenic mice, bone marrow histology in the rescued mice showed normalized megakaryocyte morphology, and in vitro CD61-specific T-cell cytotoxicity was significantly suppressed. These results indicate that antibody-mediated ITP is resistant to allogeneic platelet transfusions, while the T-cell-mediated form of the disease is susceptible, suggesting that transfusion therapy may be beneficial in antibody-negative ITP.


Assuntos
Transfusão de Plaquetas/métodos , Linfócitos T/imunologia , Trombocitopenia/genética , Trombocitopenia/prevenção & controle , Animais , Células da Medula Óssea/citologia , Modelos Animais de Doenças , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/imunologia , Integrina beta3/metabolismo , Megacariócitos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Baço/citologia , Trombocitopenia/imunologia , Fatores de Tempo
8.
Blood ; 120(10): 2127-32, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22760780

RESUMO

Immune thrombocytopenia (ITP) is a bleeding disorder in which antibodies and/or T cells lead to enhanced peripheral platelet destruction and reduced bone marrow platelet production. Several reports have observed that ITP is associated with a peripheral deficiency of tolerance-inducing CD4+CD25+FoxP3+ T regulatory cells (Tregs). Using a murine model of ITP, we analyzed Tregs in the spleen and thymus. CD61 knockout mice were immunized against wild-type (CD61+) platelets, and their splenocytes were transferred into severe combined immunodeficient (SCID) mice. Compared with SCID mice receiving naive splenocytes, within 2 weeks after transfer, the ITP SCID mice became thrombocytopenic (< 200 × 10(9) platelets/L) and had increased serum anti-CD61 antibodies. The quantity of thymic Tregs by 2 weeks after transfer was significantly elevated, whereas Tregs in the spleens were significantly reduced. Treatment of the ITP mice with 2 g/kg intravenous immunoglobulin raised the platelet counts, reduced antibody production, and normalized the thymic and splenic Treg populations. Compared with thymocytes from ITP mice treated with intravenous immunoglobulin, thymocytes from untreated ITP mice delayed the onset of ITP when administered before engraftment with immune splenocytes. These results suggest that ITP in mice is associated with a peripheral Treg deficiency because of thymic retention and therapy normalizes the Tregs.


Assuntos
Baço/imunologia , Linfócitos T Reguladores/imunologia , Trombocitopenia/imunologia , Timo/imunologia , Animais , Anticorpos/administração & dosagem , Anticorpos/sangue , Anticorpos/imunologia , Plaquetas/imunologia , Contagem de Linfócito CD4 , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/imunologia , Doenças do Sistema Imunitário , Imunoglobulinas Intravenosas/uso terapêutico , Integrina beta3/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Transfusão de Linfócitos , Camundongos , Camundongos Knockout , Camundongos SCID , Especificidade de Órgãos , Baço/efeitos dos fármacos , Baço/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/patologia , Trombocitopenia/tratamento farmacológico , Trombocitopenia/patologia , Timo/efeitos dos fármacos , Timo/patologia
9.
Cureus ; 16(6): e62032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38989343

RESUMO

This case report provides a comprehensive overview of a unique case of a 64-year-old male patient with head and neck (H&N) cancer who initially presented with compressive convulsive syncope, an initial manifestation of carotid sinus syndrome (CSS). CSS is an autonomic nervous system disease that often manifests as hypotension, dizziness, cerebral ischemia, or syncope, usually in elderly patients. In this case, the patient's laryngeal cancer led to lymphedema and encasement of the bilateral carotid arteries, inducing CSS and resulting in recurrent episodes of hypotension and bradycardia. These symptoms were managed through the administration of atropine and transcutaneous pacemaker placement, suggesting a probable mixed type of CSS. The patient was discharged on long-term theophylline treatment for symptomatic control of bradycardia episodes. Despite the promising outcomes of CSS cases treated with pacemakers, the efficacy is not universal and limitations may arise, particularly in H&N cancer patients. Therefore, the patient was managed with theophylline rather than a pacemaker due to its non-invasiveness and effectiveness in temporarily managing CSS. Although rare, CSS should be considered in patients experiencing convulsive syncope alongside H&N malignancies. As the evidence and consensus regarding CSS treatment in H&N cancer patients are scarce, additional research is necessary to evaluate and compare available options. This abstract concludes by emphasizing the need for further research and case reports to establish a consensus on the optimal management approach for patients affected by CSS due to compression from H&N cancers.

12.
Diabetes ; 72(12): 1751-1765, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699387

RESUMO

Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes. Here, we examined the pleiotropic role of caspase 8 in adipocytes and obesity-associated insulin resistance. Caspase 8 expression was increased in adipocytes from mice and humans with obesity and insulin resistance. Treatment of 3T3-L1 adipocytes with caspase 8 inhibitor Z-IETD-FMK decreased both death receptor-mediated signaling and targets of nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling. We generated novel adipose tissue and adipocyte-specific caspase 8 knockout mice (aP2Casp8-/- and adipoqCasp8-/-). Both males and females had improved glucose tolerance in the setting of high-fat diet (HFD) feeding. Knockout mice also gained less weight on HFD, with decreased adiposity, adipocyte size, and hepatic steatosis. These mice had decreased adipose tissue inflammation and decreased activation of canonical and noncanonical NF-κB signaling. Furthermore, they demonstrated increased energy expenditure, core body temperature, and UCP1 expression. Adipocyte-specific activation of Ikbkb or housing mice at thermoneutrality attenuated improvements in glucose tolerance. These data demonstrate an important role for caspase 8 in mediating adipocyte cell death and inflammation to regulate glucose and energy homeostasis. ARTICLE HIGHLIGHTS: Caspase 8 is increased in adipocytes from mice and humans with obesity and insulin resistance. Knockdown of caspase 8 in adipocytes protects mice from glucose intolerance and weight gain on a high-fat diet. Knockdown of caspase 8 decreases Fas signaling, as well as canonical and noncanonical nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling in adipose tissue. Improved glucose tolerance occurs via reduced activation of NF-κB signaling and via induction of UCP1 in adipocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Masculino , Feminino , Animais , Camundongos , NF-kappa B/metabolismo , Resistência à Insulina/genética , Caspase 8/genética , Caspase 8/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Knockout , Adipócitos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Glucose/metabolismo , Apoptose/genética
13.
Blood ; 116(16): 3073-9, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20616220

RESUMO

Transfusion-related acute lung injury (TRALI) is a serious complication of transfusion and has been ranked as one of the leading causes of transfusion-related fatalities. Nonetheless, many details of the immunopathogenesis of TRALI, particularly with respect to recipient factors are unknown. We used a murine model of antibody-mediated TRALI in an attempt to understand the role that recipient lymphocytes might play in TRALI reactions. Intravenous injection of an IgG2a antimurine major histocompatibility complex class I antibody (34-1-2s) into BALB/c mice induced moderate hypothermia and pulmonary granulocyte accumulation but no pulmonary edema nor mortality. In contrast, 34-1-2s injections into mice with severe combined immunodeficiency caused severe hypothermia, severe pulmonary edema, and approximately 40% mortality indicating a critical role for T and B lymphocytes in suppressing TRALI reactions. Adoptive transfer of purified CD8(+) T lymphocytes or CD4(+) T cells but not CD19(+) B cells into the severe combined immunodeficiency mice alleviated the antibody-induced hypothermia, lung damage, and mortality, suggesting that T lymphocytes were responsible for the protective effect. Taken together, these results suggest that recipient T lymphocytes play a significant role in suppressing antibody-mediated TRALI reactions. They identify a potentially new recipient mechanism that controls the severity of TRALI reactions.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Anticorpos/efeitos adversos , Linfócitos T/imunologia , Reação Transfusional , Animais , Anticorpos/imunologia , Quimiocina CXCL2/sangue , Quimiocina CXCL2/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Hipotermia/etiologia , Hipotermia/imunologia , Imunoglobulina G/efeitos adversos , Imunoglobulina G/imunologia , Pulmão/citologia , Pulmão/patologia , Transfusão de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Neutrófilos/imunologia
14.
Blood ; 115(6): 1247-53, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20007808

RESUMO

Immune thrombocytopenia (ITP) is a bleeding disorder characterized by antibody-opsonized platelets being prematurely destroyed in the spleen, although some patients with ITP may have a cell-mediated form of thrombocytopenia. Although several animal models of ITP have been developed, few mimic primary chronic ITP nor have any shown cell-mediated platelet destruction. To create this type of model, splenocytes from CD61 knockout mice immunized against CD61(+) platelets were transferred into severe combined immunodeficient (SCID) (CD61(+)) mouse recipients, and their platelet counts and phenotypes were observed. As few as 5 x 10(4) splenocytes induced a significant thrombocytopenia and bleeding mortality (80%) in recipients within 3 weeks after transfer. Depletion of lymphocyte subsets before transfer showed that the splenocyte's ability to induce thrombocytopenia and bleeding completely depended on CD4(+) T helper cells and that both CD19(+) B cell (antibody)- and CD8(+) T cell (cell)-mediated effector mechanisms were responsible. Treatment of the SCID mouse recipients with intravenous gamma-globulins raised platelet counts and completely prevented bleeding mortality induced by antibody-mediated effector mechanisms but did not affect cell-mediated disease. This novel model not only shows both antibody- and cell-mediated ITP and bleeding but also suggests that these 2 effector mechanisms have a differential response to therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Imunoglobulinas Intravenosas/administração & dosagem , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/terapia , Animais , Antígenos CD19/imunologia , Plaquetas/imunologia , Feminino , Citometria de Fluxo , Integrina beta3/imunologia , Depleção Linfocítica , Megacariócitos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Contagem de Plaquetas , Púrpura Trombocitopênica Idiopática/patologia , Baço/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/patologia
15.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35511436

RESUMO

Chronic lymphocytic leukemia (CLL) results from expansion of a CD5+ B cell clone that requires interactions with other cell types, including T cells. Moreover, patients with CLL have elevated levels of circulating IL-17A+ and IL-17F+ CD4+ T (Th17) cells, with higher numbers of IL-17A+ Th17 cells correlating with better outcomes. We report that CLL Th17 cells expressed more miR155, a Th17-differentiation regulator, than control Th17 cells, despite naive CD4+ T (Tn) cell basal miR155 levels being similar in both. We also found that CLL cells directly regulated miR155 levels in Tn cells, thereby affecting Th17 differentiation, by documenting that coculturing Tn cells with resting or activated (Bact) CLL cells altered the magnitude and direction of T cell miR155 levels; CLL Bact cells promoted IL-17A+ and IL-17F+ T cell generation by an miR155-dependent mechanism, confirmed by miR155 inhibition; coculture of Tn cells with CLL Bact cells led to a linear correlation between the degree and direction of T cell miR155 expression changes and production of IL-17F but not IL-17A; and Bact cell-mediated changes in Tn cell miR155 expression correlated with outcome, irrespective of IGHV mutation status, a strong prognostic indicator. These results identify a potentially unrecognized CLL Bact cell-dependent mechanism, upregulation of Tn cell miR155 expression and subsequent enhancement of IL-17F+ Th17 generation, that favors better clinical courses.


Assuntos
Leucemia Linfocítica Crônica de Células B , MicroRNAs , Células Th17 , Humanos , Interleucina-17/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Células Th17/metabolismo
16.
Mol Metab ; 66: 101594, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165813

RESUMO

OBJECTIVE: Adipose tissue is a very dynamic metabolic organ that plays an essential role in regulating whole-body glucose homeostasis. Dysfunctional adipose tissue hypertrophy with obesity is associated with fibrosis and type 2 diabetes. Yes-associated protein 1 (YAP) is a transcription cofactor important in the Hippo signaling pathway. However, the role of YAP in adipose tissue and glucose homeostasis is unknown. METHODS: To study the role of YAP with metabolic stress, we assessed how increased weight and insulin resistance impact YAP in humans and mouse models. To further investigate the in vivo role of YAP specifically in adipose tissue and glucose homeostasis, we developed adipose tissue-specific YAP knockout mice and placed them on either chow or high fat diet (HFD) for 12-14 weeks. To further study the direct role of YAP in adipocytes we used 3T3-L1 cells. RESULTS: We found that YAP protein levels increase in adipose tissue from humans with type 2 diabetes and mouse models of diet-induced obesity and insulin resistance. This suggests that YAP signaling may contribute to adipocyte dysfunction and insulin resistance under metabolic stress conditions. On an HFD, adipose tissue YAP knockout mice had improved glucose tolerance compared to littermate controls. Perigonadal fat pad weight was also decreased in knockout animals, with smaller adipocyte size. Adipose tissue fibrosis and gene expression associated with fibrosis was decreased in vivo and in vitro in 3T3-L1 cells treated with a YAP inhibitor or siRNA. CONCLUSIONS: We show that YAP is increased in adipose tissue with weight gain and insulin resistance. Disruption of YAP in adipocytes prevents glucose intolerance and adipose tissue fibrosis, suggesting that YAP plays an important role in regulating adipose tissue and glucose homeostasis with metabolic stress.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Camundongos , Animais , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Aumento de Peso , Homeostase , Fibrose , Camundongos Knockout , Glucose/metabolismo
18.
Leukemia ; 35(11): 3163-3175, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33935280

RESUMO

Cancer pathogenesis involves the interplay of tumor- and microenvironment-derived stimuli. Here we focused on the influence of an immunomodulatory cell type, myeloid-derived suppressor cells (MDSCs), and their lineage-related subtypes on autologous T lymphocytes. Although MDSCs as a group correlated with an immunosuppressive Th repertoire and worse clinical course, MDSC subtypes (polymorphonuclear, PMN-MDSC, and monocytic, M-MDSCs) were often functionally discordant. In vivo, PMN-MDSCs existed in higher numbers, correlated with different Th-subsets, and more strongly associated with poor clinical course than M-MDSCs. In vitro, PMN-MDSCs were more efficient at blocking T-cell growth and promoted Th17 differentiation. Conversely, in vitro M-MDSCs varied in their ability to suppress T-cell proliferation, due to the action of TNFα, and promoted a more immunostimulatory Th compartment. Ibrutinib therapy impacted MDSCs differentially as well, since after initiating therapy, PMN-MDSC numbers progressively declined, whereas M-MDSC numbers were unaffected, leading to a set of less immunosuppressive Th cells. Consistent with this, clinical improvement based on decreasing CLL-cell numbers correlated with the decrease in PMN-MDSCs. Collectively, the data support a balance between PMN-MDSC and M-MDSC numbers and function influencing CLL disease course.


Assuntos
Leucemia Linfocítica Crônica de Células B/imunologia , Ativação Linfocitária/imunologia , Células Supressoras Mieloides/imunologia , Linfócitos T/imunologia , Células Th1/imunologia , Células Th2/imunologia , Microambiente Tumoral , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Monócitos/imunologia , Células Supressoras Mieloides/classificação , Células Supressoras Mieloides/patologia
19.
Histol Histopathol ; 35(12): 1483-1492, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33124682

RESUMO

To determine the role of the transplantation of bone marrow-derived mesenchymal stem cells (MSCs) in podocyte renewal, we studied BALB/C mice with or without adriamycin-induced acute kidney injury. MSCs were transplanted ectopically under the capsule of the left kidney or into the peritoneal cavity after the onset of kidney injury to test testing their local or systemic paracrine effects, respectively. Adriamycin produced increases in urine protein: creatinine ratios, blood urea nitrogen, and blood pressure, which improved after both renal subcapsular and intraperitoneal MSCs transplants. The histological changes of adriamycin kidney changes regressed in both kidneys and in only the ipsilateral kidney after intraperitoneal or renal subcapsular transplants indicating that the benefits of transplanted MSCs were related to the extent of paracrine factor distribution. Analysis of kidney tissues for p57-positive parietal epithelial cells (PECs) showed that MSC transplants restored adriamycin-induced decreases in the abundance of these cells to normal levels, although after renal subcapsular transplants these changes did not extend to contralateral kidneys. Moreover, adriamycin caused inflammatory activation of PECs with coexpression of CD44 and phospho-ERK, which was normalized in both or only ipsilateral kidneys depending on whether MSCs were transplanted in the peritoneal cavity or subcapsular space, respectively.


Assuntos
Injúria Renal Aguda/cirurgia , Proliferação de Células , Transplante de Células-Tronco Mesenquimais , Podócitos/patologia , Regeneração , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Modelos Animais de Doenças , Doxorrubicina , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Receptores de Hialuronatos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação , Podócitos/metabolismo , Transdução de Sinais , Proteínas WT1/metabolismo
20.
Biochimie ; 174: 74-83, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32304771

RESUMO

EDA2R is a member of the large family of tumor necrosis factor receptor (TNFR). Previous studies suggested that EDA2R expression might be increased in the kidneys of diabetic mice. However, its mRNA and protein expression in kidneys were not analyzed; moreover, its role in the development of diabetic kidney disease was not explored. Here we analyzed the mRNA and protein expressions of EDA2R in diabetic kidneys and examined its role in the podocyte injury in high glucose milieu. By analysis with real-time PCR, Western blotting, we found that both the mRNA and protein levels of EDA2R were increased in the kidneys of diabetic mice. Immunohistochemical studies revealed that EDA2R expression was enhanced in both glomerular and tubular cells of diabetic mice and humans. In vitro studies, high glucose increased EDA2R expression in cultured human podocytes. Overexpression of EDA2R in podocytes promoted podocyte apoptosis and decreased nephrin expression. Moreover, ED2AR increased ROS generation in podocytes, while inhibiting ROS generation attenuates EDA2R-mediated podocyte injury. In addition, EDA2R silencing partially suppressed high glucose-induced ROS generation, apoptosis, and nephrin decrease. Our study demonstrated that high glucose increases EDA2R expression in kidney cells and that EDA2R induces podocyte apoptosis and dedifferentiation in high glucose milieu partially through enhanced ROS generation.


Assuntos
Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Podócitos/metabolismo , Receptor Xedar/fisiologia , Animais , Apoptose , Células Cultivadas , Feminino , Rim/patologia , Proteínas de Membrana/metabolismo , Camundongos , Podócitos/patologia , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA